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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to 

the topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every 

possibility for some omission or inadequacy in few areas or topics, 

which would definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-2 FIELD EXTENSION AND 

GALOIS THEORY 
 

The main questions of ruler and compass constructions left unanswered 

by the ancient Greeks, such as whether an arbitrary angle can be 

trisected, are resolved. We combine analytic and algebraic arguments to 

prove the transcendence of π  and e. we prove that no algebraic formula 

exists for the roots of an arbitrary polynomial of degree 5 or larger. In 

order to prove an analog of the fundamental theorem for infinite 

extensions, we need to put a topology on the Galois group. It is through 

this topology that we can determine which subgroups show up in the 

correspondence between sub extensions of a Galois extension and 

subgroups of the Galois group. The latter topic, among other things, 

allows us to extend to arbitrary extensions the idea of separability. The 

remaining sections of this chapter introduce some of the most basic ideas 

of algebraic geometry and show the connections between algebraic 

geometry and field theory, notably the theory of finitely generated non 

algebraic extensions. 
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8.8 Keywords 
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8.10 Suggested Reading and References 
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8.0 OBJECTIVES 
 

Understand the Algebraic independence and Transcendence bases 

Enumerate Luroth’s theorem 

How to Separating transcendence bases 

Understand the Transcendental Galois Theory 

8.1 INTRODUCTION 
 

In this chapter we consider fields      with   much bigger than F. For 

example we could have     

8.2 ALGEBRAIC INDEPENDENCE 
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Elements          of   give rise to an F – homomorphism 

     (        )    ,        -     

If the Kernel of this homomorphism is zero, then the    are said to be 

algebraically independent over F. and otherwise, they are algebraically 

dependent over F. Thus, the    are algebraically dependent over F if 

there exists a nonzero polynomial   (        )     ,        - such 

that   (        )    and they are algebraically independent if 

         
        ∑         

  
      

              
               

Note the similarity with linear independence. In fact, if   is required to 

be homogeneous of degree 1, then the definition becomes that of linear 

independence 

Example: 

(a)  A single element   is algebraically independent over F if and 

only if it is transcendental over F 

(b)  The complex number   and   are almost certainty algebraically 

independent over  . But this has not been proved 

An infinite set A is algebraically independent over F if every finite 

subset of A is algebraically independent ; otherwise, it is algebraically 

dependent over F 

8.2.1 Remark: If          are algebraically independent over F, then 

the map 

  (        )     (        )    ,        -     ,        - 

Is an injection, and hence an isomorphism. This isomorphism then 

extends to the field of fractions 

            ,        -      ,        - 

In this case,   (        )is called a pure transcendental extension of F. 

The polynomial 

 ( )                 (  )    

Has Galois group   over   (        ). 
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8.2.2 LEMMA : Let        and let       the following conditions are 

equivalent: 

(a)   is algebraic over F(A): 

(b) there exists            ( ) such that              

     

(c) there exists               ( ), not all 0 such that      

                   

(d) there exists an 

 (          )     ,          -                  such 

that   (           )     but   (           )    

 

Proof:( )  ( )  ( )   are obvious 

( )  ( )  Write   (        ) as a polynomial in Y with coefficients 

in the ring    ,         - 

  (        )   ∑   (       )    

 

 

 

Then (c) holds with        (       ) 

( )  ( ) The    in ( ) can be expressed as polynomials in a finite 

number of elements         of A, says        (       )           

  ,      -. Then (d) holds with    ∑   (       )     

8.2.3 Definition: When   satisfies the equivalent condition of Lemma 

9.3, it is said to be algebraically dependent on A (over F). A and B is 

algebraically dependent on A if each element B is algebraically 

dependent on A 

The theory in the remainder of this chapter is logically very similar to a 

part of linear algebra. It is useful to keep the following correspondences 

in mind: 

 

Linear algebra Transcendence 

Linearly independent Algebraically independent 

A   span(B) A algebraically dependent on B 

Basis Transcendence basis 
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Dimension Transcendence degree 

 

8.3 TRANSCENDENCE BASES 

  

8.3.1 Theorem: (FUNDAMENTAL RESULT) Let    *       + 

and B = *       +be two subsets of   . Assume 

(a) A is algebraically independent (over F) 

(b) A is algebraically dependent on B (over F) 

Then      . 

We first prove two lemmas 

8.3.2 LEMMA: (THE EXCHANGE PROPERTY): Let *       + be a 

subset of  ; if   is algebraically dependent on *       + but not on 

*         +, then    is algebraically dependent on *           +. 

 

Proof: Because   is algebraically dependent on *       + there exists 

a polynomial   (        ) with coefficient in F such that 

Write   as a polynomial in    

  (        )   ∑   (           )  
   

 

 

 

And ob serve that because  (           )   , at least one of the 

polynomials 

  (           ) 

Say         not the zero polynomial. Because   is not algebraically 

dependent on 

*         +, 

    (           )     Therefore,   (           )     Since 

  (         )   , this shows that    is algebraically dependent on 

*           +. 
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8.3.3 LEMMA (TRANSIVITY OF ALEBRAIC DEPENDENCE) If C is 

algebraically dependent on B, and B is algebraically dependent on A, 

then C is algebraically dependent on A. 

PROOF: The argument in the proof of Proposition shows that if   is 

algebraically over a field E which is algebraic over a field F, then   is 

algebraic over F (if         are the coefficients of the minimum 

polynomial of   over E, then the field F [       ,  ) has finite degree 

over F) Apply this with E = A (A   B) and F = F(A) 

 

PROOF (OF THEOREM 8.3.1): Let   be the number of elements that 

A and B have in common. If     then      and certainly      

suppose that    , and write B = *                 + since      is 

algebraically dependent on *                 + but not on 

*       +, there will be a             , such that      is 

algebraically dependent on *                 + but not 

*                   + 

The exchange lemma then shows that    is algebraically dependent on 

       *    +   {  } 

Therefore B is algebraically dependent on   , so A is algebraically 

dependent on   (by 9.7). If      , repeat the argument with A and 

  . Eventually we’ll achieve      and      

8.3.4 Definition: A transcendence basis for   over F is an algebraically 

independent set A such that   is algebraically over F(A) 

8.3.5 LEMMA : If   is algebraic over F(A), and A is minimal among 

subsets of        this property, then it is a transcendence basis for   

over F 

PROOF: If A is not algebraically independent, then there is an       that 

is algebraically dependent on A   * +. It follows from Lemma 9.7 that   

is algebraic over F(A   * +) 

8.3.6 THEOREM: If there is a finite subset A     such that   is 

algebraic over F (A), then       a finite transcendence basis over F. 
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Moreover, every transcendence basis is finite, and they all have the same 

number of elements. 

PROOF: In fact, every minimal subset    of   such that        ebraic 

over  (  ) will be a transcendence basis. The second statement follows 

from Theorem 8.3.1 

 

8.3.7 LEMMA: Suppose that A is algebraically independent, but that 

   * + is algebraically dependent. Then   is algebraic over F(A) 

PROOF: The hypothesis is that there exists is nonzero polynomial 

  (        )       (        ) 

Such that   (         )    some distinct          . Because A is 

algebraically independent, Y does occur in  . Therefore 

                           ,      - 

           

As       and the   are algebraically independent,     (       )     

Because   is a root of 

      (       )      (       )        (       ) 

It is algebraic over  (          ( ) 

8.3.8 PROPOSITION: Every maximal algebraically independent subset 

of   over F. 

PROOF: We have to prove that   is algebraic over F(A). If A is 

maximal among algebraically independent subsets. But the maximality 

implies that, for every            ⋃* +is algebraically dependent, and 

so the lemma shows that   is algebraic over F(A) 

Recall that (except in  ), We use an asterisk to signal a result depending 

on Zorn’s lemma 

8.3.9 THEOREM: Every algebraically independent subset of   is 

contained in a transcendence basis for   over F; in particular, 

transcendence bases exist. 

PROOF: Let   be the set of algebraically independent subsets of  
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                       set. We can partially order it by inclusion. Let T 

be a totally ordered subsets of S, and let B = ⋃* |     + I claim that 

     , i.e. that B is algebraically independent. If not, there exists a finite 

subset    of   that is not algebraically independent. But such a subset 

will be contained in one of the sets in T, which is a contradiction. Now 

Zorn’s lemma shows that there exists a maximal algebraically 

independent containing S, which Proposition 9.12 shows to be a 

transcendence basis for   over F. 

It is possible to show that any two (possible infinite) transcendence bases 

for   over F have the same cardinality. The cardinality of a 

transcendence basis for   over F is called the transcendence degree of   

over F. For example, the pure transcendental extension   (       )has 

transcendence degree   over F 

EXAMPLE: Let         be the elementary symmetric polynomials in 

         The field F(       ) is algebraic over F (       ) and so 

*          + contains a transcendence basis of F(       ) because 

F(       ) has transcendence degree  , the      must themselves be a 

transcendence basis 

EXAMPLE: Let   be the field of meromorphic functions on a compact 

complex manifold M 

(a) The only meromorphic functions on the Riemann sphere are the 

rational functions in  . Hence, in this case   is a pure 

transcendental extension of   of transcendence degree 1. 

(b) If M is a Riemann surface, then the transcendence degree of   

over   is 1, and   is a pure transcendental extension of     is  

isomorphic to the Riemann sphere 

(c) If M has complex dimension  , then the transcendence degree is 

  , with equality holding if M is embeddable in some projective 

space. 

8.3.10 PROPOSITION: Any two algebraically closed fields with the 

same transcendence degree of F and F – isomorphic 
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PROOF: Choose transcendence bases   and    for the two fields. By 

assumptions, there exists a bijection        Which extends uniquely to 

an F- isomorphism  , -   ,  -, and hence to an F- isomorphism of the 

fields of fractions  ( )   (,  -), Then the two fields in question are 

algebraic closures of the same field. And hence are isomorphic.  

8.3.11 REMARK : Any two algebraically closed field with the same 

uncountable cardinality and the same characteristics are isomorphic. The 

idea of the proof is as follows. Let F and    be the prime subfields of   

and   ; we can identify F and   . Then show that when   is uncountable 

the cardinality of   is the same as the cardinality of a transcendence 

basis over F. Finally, apply the proposition. 

 

8.3.12 REMARK: What are the automorphisms of  ? There are only 

two continuous automorphisms (cf. Exercise A – 8 and solution). If we 

assume Zorn’s lemma, then it is easy to construct many: choose any 

transcendence basis A for   over  , and choose any permutation   of A; 

then   defines an isomorphism   ( )    ( ) that can be extended to 

an automorphism of  . Without Zorn’s lemma, there are only two, 

because the noncontinuous automorphisms are non-measurable, 
 

 
 and it 

is known that the Zorn’s lemma is required to construct non-measurable 

functions 

Check your Progress-1 

1. Define algebraically dependent 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. State and prove the Exchange Property 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

8.4 L ROTH’S THEOREM 

 



Notes 

14 

8.4.1THEOREM (LÜROTH):  Let L = F(X) with X transcendental over 

F. Every subfield E of L properly containing F is of the form E =  ( ) 

for some       transcendental over F. 

We first sketch a geometric proof of L roth’s theorem. The inclusion of 

E into L corresponds to a map from the projective line   . Onto a 

complete regular curve C. Now the Riemann – Hurwitz formula shows 

that C has genus 0. Since it has an F – rational point (the image of any F 

– rational point of    ), it is isomorphic to   . Therefore E =  ( ) for 

some       transcendental over F. 

Before giving the elementary proof, we review Gauss’s lemma and its 

consequences. 

8.4.2 GAUSS’S LEMMA: 

Let R be a unique factorization domain. And let Q be its field of fraction, 

for example, R = F[X] and Q = F[X] A polynomial  ( )   ∑    
  in 

R[T] is said to be primitive if its coefficients    have no common factor 

other than units. Every polynomial   in Q[X] can be written    ( )    

with  ( )    and    primitive (write      ⁄  with   a common 

denominator for the coefficients of  , and then write   (  )   ⁄  with 

  the greatest common divisor of the coefficients of    ). The element 

 ( ) is uniquely determined up to a unit, and     , - if and only if 

 ( )   :  

8.4.3 If  , g    , - are primitive, so also is  g 

Let    ∑    
  and g = ∑    

  let   be a prime element of R. Because   

is primitive, there exists a coefficient   not divisible by   - let    
be the 

first such coefficient. Similarly, let    
be the first coefficient of g not 

divisible by   then the coefficient of         in  g is not divisible by   

This shows that  g is primitive 

8.4.4 : for any    g    R[T], c ( g) = c ( ) (g) and (  )        

Let     ( )   and g =  (g)    with    and    primitive. Then f  

 ( )       with      primitive, and so  ( g) = c( ) ( ) and (  )  = 
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8.4.5 : Let   be a polynomial in R[T]. If   factors into the product of 

two non-constant polynomials in Q[T], then it factors into the 

product of two non-constant polynomials in R[T] 

Suppose that    g  in Q[T] then          in R[T], so if   

 ( )    ( ( )   )    with  ( )    and    in R[T] 

 

8.4.6 : Let  , g   , ]. If   divides g in Q[T] and   is primitive, then it 

divides g in R[T] 

Let     g with     , -. Then  ( )    (g)    and so     , - 

PROOF OF L ROTH’S THEOREM: 

We define the degree deg ( ) of an element    of  ( ) to be the larger 

of the degrees of the numerator and denominator of   when it is 

expressed in its simplest form. 

 

8.4.7 LEMMA: Let    ( )    Then   is transcendental over F, X is 

algebraic over  ( )  and [F(X) : F(u)] = deg(u) 

 

PROOF: Let  ( )     ( )  ( ) with  ( ) and  ( ) relatively prime 

polynomials. Now  ( )    ( )   ( ), -, and it has X as a root, and 

so X is algebraic over  ( ). It follows that   is transcendental over  . 

 

The polynomial  ( )    ( )    ,   - is clearly irreducible. As   is 

transcendental over F 

 ,   -   ,   -           

And so  ( )    ( )  is irreducible in  ,   -  and hence also in 

 ( ), - by Gauss’s lemma (8.4.5). It has X as a root, and so, up to a 

constant, it is the minimum polynomial of X over  ( ), and its degree is 

deg( ), which proves the lemma 

EXAMPLE: We have F(X) =  ( ) if and if 
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With        and neither       nor      a constant multiple of the 

other These conditions are equivalent to          

We know prove Theorem 8.4.1:  Let   be an element of E not in F. Then 

, ( )   -  , ( )  ( )-     ( ) 

 

And so X is algebraic over E. Let 

 ( )                        , 

Be its minimum polynomial. As X is transcendental over F. Some 

      , and we’ll show that E =  (  ) 

Let  ( )   (, - be a polynomial of least degree such that  ( )  ( )  

 , - for all    and let 

 

  (   )     ( )                        ,   -  

 

Then    is primitive as a polynomial in T, i.e. , gcd(           )    

in F[X]. The degree    of    in X is the largest degree of one of the 

polynomials            say       (   ). Write        with     

relatively prime polynomials in F[X]. Now  ( )    ( )  ( ) is a 

polynomial in  , - having X as a root, and so it is divisible by    say 

 

 ( )  ( )    ( )    ( )   ( )  ( )   , - 

On multiplying through by  ( ), we find that 

 

 ( )  ( )  ( )    ( )  ( )    ( )  ( ) 

As    differs from   by a non zero element of  ( ), the equation shows 

that    divides  ( )  ( )    ( )  ( ) in F(X)[T]. But    is primitive 

in  , -, -, and so it divides  ( )  ( )    ( )  ( ) in  , -, -  

 ,   - (by 8.4.6), i.e., there exists a polynomial     ,   - such that 

  (   )  (   )    ( )  ( )    ( )  ( ) 
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In (18), the polynomial c(X).b(T) – c(T).b(X)has degree at most   in X, 

and   is the degree of   (   ) in X. Therefore,  ( )  ( )  

  ( )  ( ) has degree exactly   in X, and  (   )has degree   in X i.e. 

    , - It now follows from that  ( )  ( )    ( )  ( ) is not 

divisible by a nonconstant polynomial in F[X] 

 

The polynomial  ( )  ( )    ( )  ( ) is symmetric in X and T, i.e., 

it is unchanged when they are swapped. Therefore, it has degree   and T 

and it is not divisible by a non constant polynomial in F[T]. It now 

follows from (18) that   is not divisible by a non constant polynomial in 

F[T], and so it lies in   . We conclude that    (   ) is a constant 

multiple of  ( )  ( )    ( )  ( )  

On comparing degrees in T we see that     Thus 

 

, ( )  (  )-       (  )     (   )       , ( )   -

 , ( )   (  )- 

Hence, equality holds throughout, and so E =  ,  - 

Finally, if        then 

[F(X): E]  , ( )  (  )     deg(  )   deg(   )   deg(   )    

, ( )  - 

And So    (  ) as claimed 

 

8.4.4 REMARK: Lüroth’s theorem fails when there is more than one 

variable – see Zariski’s example and Swan’s example. However, the 

following is true: if [F (X, Y): E]     and   is algebraically closed of 

characteristic zero, then E is a pure transcendental extension of F 

(Theorem of Zariski, 1958) 

NOTES: Lüroth proved this theorem over   in 1876. For general fields, 

it was proved by Steinitz in 1910, by the above argument. 
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8.5 SEPARATING TRANSCENDENCE 

BASES 

 

Let      be fields with E finitely generated over F. A subset 

*       ) of E is a separating transcendence basis for     if it is 

algebraically independent over F and E is a finite separable extension of 

F(       ) 

 

8.5.1 THEOREM: If F is perfect, then every finitely generated 

extension E and F admits a separating transcendence basis over F. 

PROOF: If F has characteristic zero, then every transcendence basis is 

separating, and so the statement becomes that of (9.10). Thus, we may 

assume F has characteristic     . Because F is perfect, every 

polynomial in   
      

 
 with coefficients in F is a  th power in 

 ,       -  

∑    
      

   
   

   
  (∑  

     

 

   
  )

 

  

 

Let   (          ), and assume       where   is the 

transcendence degree of   over    After renumbering, we may suppose 

that         are algebraically independent (9.9). Then  (         ) = 

0 for some non zero irreducible polynomial  (         ) with 

coefficients in F. Not all         are zero, for otherwise   would be a 

polynomial in   
        

 
  which implies that it is a   the power. After 

renumbering            we may suppose that             Then 

     is separately algebraic over F (      ) and  (             ) is 

algebraic over F (        ) hence over F (      ) (1.31) and so, by 

the primitive element theorem (5.1), there is an element   such that 

 (         )    (         ) Thus E is  generated by     elements 

(as a field) containing F). After repeating process, possibly several times, 

we will have E =  (         ) with      separable over  (       ) 
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ASIDE: In fact, we showed that E admits a separating transcendence 

basis with     elements where   is the transcendence degree. This has 

the following geometric interpretation: every irreducible algebraic 

variety of dimension   over a perfect field   is birationally equivalent 

with a hypersurface H in      for which the projection (         )  

(       ) realizes  ( ) as a finite separable extension of F(  ) (See 

my notes on Algebraic Geometry). 

 

8.6 TRANSCENDENTAL GALOIS 

THEORY 

 

8.6.1 THEOREM: Let   be an algebraically closed field and let F be a 

perfect subfield of  . If       is fixed by all F – automorphisms of    

then      , i.e     (   )    

PROOF: Let         . If   is algebraic over F, then there is an F – 

homomorphism F[ -      sending   to a conjugate of   in   in 

different from  . This homomorphism extends to a homomorphism from 

the algebraic closure     of F in   to   (by 6.8). Now choose a 

transcendence basis   for   over    . We can extend our homomorphism 

to a homomorphism F(A)     by mapping each element of A to itself. 

Finally, we can extend this homomorphism to a homomorphism from the 

algebraic closure   of F(A) to  , The F - homomorphism       we 

obtain is automatically an isomorphism (cf 6.8) 

If   is transcendental over F, then it is part of a transcendence basis A for 

  over F. If A has at least two elements, then there exists an 

automorphism   of A such that   ( )     Now   defines an F - 

homomorphism F(A)     which extends to an isomorphism       as 

before. If A = { +, then we let F( )     be in F – homomorphism 

sending   to    . Again, this extends to an isomorphism      . 

Let      be fields and G = Aut(   ) For any finite subset   of  ., let 

 ( )  *    |      for all      + 
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Then, as in   , the subgroups G(S)  of G form a neighbourhood base for 

a unique topology on G, which we again call the Krull topology. The 

same argument as in  7 shows that this topology is Hausdorff (but it is 

not necessarily compact) 

8.6.2 THEOREM : Let      be fields such that        

   (   ) 

 

(a) For every finite extension E of F in       (   )    

(b) The maps 

       , M   Aut(   ) (19) 

 

Are inverse bijections between the set of compact subgroups of G and 

the set of intermediate fields over which   is Galois (possible infinite) 

 

 

 

(c) If there exists an M finitely generated over F such that   is Galois 

over M, then G is locally compact, and under (19): 

 

  

(d) Let H be a subgroup of G , and let M =   . Then the algebraic 

closure    of M is Galois over M. If moreover H = Auto (   ), 

then Aut(    ) is a normal subgroup of H and       |   

maps H   Aut (    ) is isomorphically onto a dense subgroup 

of Aut (   ⁄ ) 

Check your Progress-2 

3. Discuss: If F is perfect, then every finitely generated extension E and 

F admits a separating transcendence basis over F. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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4. State and prove Transcendental Galois Theory 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

8.7 LET US SUM UP 
 

We have discussed the Algebraic independence and Transcendence 

bases. We have understood the Luroth’s theorem and Transcendental 

Galois Theory. We have discussed the concept of Separating 

transcendence bases. 

 

8.8 KEYWORDS 
 

Injection: An injective function (also known as injection, or one-to-one 

function) is a function that maps distinct elements of its domain to 

distinct elements of its codomain. 

Non- constant Polynomial : If a polynomial is not a constant, then 

the polynomial is a non-constant polynomial. 

Greatest Common Divisor (gcd) : of two or more integers, which are 

not all zero, is the largest positive integer that divides each of the 

integers. 

 

8.9 QUESTIONS FOR REVIEW 
 

1. Find the centralizer of complex conjugation in Aut(C/ ) 

2. State and prove Separating transcendence bases 
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Provide definition – 8.2.3 

Provide statement and proof – 8.3.2 

Provide proof – 8.5.1 

Provide statement and proof – 8.6.1 
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UNIT-  9 TRANSCENDENTAL 

EXTENSIONS & ALGEBRAIC 

CLOSURES 
  

STRUCTURE 

9.0 Objectives 

9.1 Introduction 

9.2 Linear Disjointness  

9.3 Zorn’s lemma 

9.4 First proof of the existence of algebraic closures 

9.5 Second proof of the existence of algebraic closures 

9.6 Third proof of the existence of algebraic closures 

9.7 Let us sum up 

9.8 Keywords 

9.9 Questions for Review 

9.10 Suggested Reading and References 

9.11 Answers to Check your Progress 

 

9.0 OBJECTIVES 
 

Understand the concept and application of  Linear Disjointness 

Enumerate Zorn’s lemma and its three proofs. 

9.1 INTRODUCTION 
 

In this section, we study linear disjointness, a technical condition but one 

with many applications. One way that we use this concept is to extend 

the definition of separability in a useful way to non-algebraic extensions. 

In this chapter, we use Zorn’s lemma to show that every field F has an 

algebraic closure Ω. 
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9.2 LINEAR DISJOINTNESS 
 

We tacitly assume that all of our field extensions of a given field F lie 

in some common extension field C of F. Problem 6 shows that this is 

not a crucial assumption. We will also make use of tensor products. By 

phrasing some results in terms of tensor products, we are able to give 

cleaner, shorter proofs. However, the basic results on linear disjointness 

can be proved without using tensor products.  

 

9.2.1 Definition : Let K and L be subfields of a field C, each containing 

a field F. Then K and L are linearly disjoint over F if every F-linearly 

independent subset of K is also linearly independent over L. 

 

Let A and B be subrings or a commutative ring N. Then the ring A[B] 

is the subring of R generated by A and B; that, is, A[B]is the smallest 

subring of R containing A ⋃B. It is not hard to show that 

 

If A and B contain a common field F, then the universal mapping 

property of tensor products shows that there is a well-defined F-linear 

transformationφ : A ⊗F B  A[B] given on generators by φ(a ⊗b) = ab.  

 

We refer to the map φ as the natural map from A ⊗FB to A[B]. We give 

a criterion in terms of tensor products for two fields to be linear disjoint 

over a common subfield. 

 

9.2.2 Proposition : Let K and L be field extensions of a field F. Then K 

and L are linearly disjoint over F if and only if the map φ : K ⊗F L  

K[L]given on generators by a ⊗ b↦ ab is an isomorphism of F-vector 

spaces. 

 

Proof. The natural map φ : K ⊗F L  K[L]is surjective by the 

descriptionof K[L] given above. So, we need to show that K and L are 

linearly disjoint over F if and only if φ is injective. Suppose first that K 
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and L are linearlydisjoint over F. Let {ki}i∈I, be a basis for K as an F-

vector space. Eachelement of K ⊗F L has a unique representation in the 

form ∑ki⊗li, withthe li ∈ L. Suppose that ∑ki⊗li∈ ker(φ), so ∑kili = 0. 

Then each li= 0, since K and L are linearly disjoint over F and {ki} is F-

linearlyindependent. Thus, φ is injective, and so φ is an isomorphism. 

 

Conversely, suppose that the map φ is an isomorphism. Let {aj}j∈J be 

an F-linearly independent subset of K. By enlarging J, we may assume 

thatthe set {aj}is a basis for K. If {aj} is not L-linearly independent, then 

there are li∈Lwith ∑ajlj = 0, a finite sum. Then ∑aj⊗ lj∈ ker(φ), 

∑aj⊗ lj= 0 by the injectivity of φ. However, elements of K ⊗FL can 

be represented uniquely in the form ∑aj ⊗mj with mi ∈L. Therefore, 

each li= 0, which forces the set {aj}to be L-linearly independent. Thus, 

K and L are linearly disjoint over F. 

 

9.2.3 Corollary: The definition of linear disjointness is symmetric; that 

is, K and L are linearly disjoint over F if and only if L and K are linearly 

disjoint over F. 

 

Proof. This follows from Proposition 20.2. The map φ : K ⊗FL  K[L] 

isan isomorphism if and only if T : L⊗F K  L[K] = K[L] is an 

isomorphism,since 'T = i o φ, where i is the canonical isomorphism K 

⊗FL L⊗F Kthat sends a⊗b to b ⊗ a.  

 

9.2.4 Lemma: Suppose that K and L are finite extensions of F. Then K 

and L are linearly disjoint over F if and only if [K L : F ] = [K: F] [L : 

F]. 

 

Proof. The natural map φ : K ⊗FL  K[L]that sends k ⊗ l to kl is 

surjective and 

 

 

Thus, φ is an isomorphism if and only if [KL : = [K: [L : F]. The 

lemma then follows from Proposition 9.2.2.  
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Example : Suppose that K and L are extensions of F with [K : 

and [L : F] relatively prime. Then K and L are linearly disjoint over F. 

To see this, note that both [K : F] and [L : F] divide [KL : F], so their 

product divides [KL : F] since these degrees are relatively prime. The 

linear disjointness of K and L over F follows from the lemma. 

 

Example : Let K be a finite Galois extension of F. If L is any 

extensionof F, then K and L are linearly disjoint over F if and only if 

K ⋂ L = F. This follows from the previous example and the theorem of 

natural irrationalities, since 

 

  

The tensor product characterization of linear disjointness leads us to 

believe that there is a reasonable notion of linear disjointness for rings, 

notjust fields. Being able to discuss linear disjointness in the case of 

integral domains will make it easier to work with fields.  

 

9.2.5 Definition: Let A and B be subrings of a field C, each containing 

a field F. Then A and B are linearly disjoint over F if the natural map 

A ⊗F B  C given by a ⊗b↦ab is injective. 

 

9.2.6 Lemma: Suppose that F is a field, andFAA' and FBB  

are all subrings of a field C. If A' and B' are linearly disjoint over F, then 

A and B are linearly disjoint over F. 

Proof. This follows immediately from properties of tensor products. 

Thereis a natural injective homomorphism i : A ⊗F B A' ⊗F B' sending 

a ⊗bto a ⊗bfora∈A and B ∈B. If the natural map φ : A' ⊗FB'  A'[B']is 

injective, then restricting φ to the image of i shows that the map p: 

A ⊗FB  A[B] is also injective.  

 

Example : Let K and L be extensions of a field F. If K ⋂L is larger 
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than F, then K and L are not linearly disjoint over F by the preceding 

lemma since K ⋂L is not linearly disjoint to itself over F. However, K 

andL may not be linearly disjoint over F even if K ⋂L = F. As an 

example, let F =  , K = F(√ ) 
(), and L = F(w√ ) 

, where w is a 

primitive third root of unity. Then K ⋂L = F, but KL = F(√ ) 
,𝜔) has 

dimension 6 over F, whereas K ⊗FL has dimension 9, so the map A 

⊗FL  KL is not injective. 

 

9.2.7 Lemma: Suppose that A and B are subrings of a field C, each 

containinga field F, with quotient fields K and L, respectively. Then A 

andB are linearly disjoint over F if and only if K and L are linearly 

disjointover F. 

 

Proof. If K and L are linearly disjoint over F, then A and B are also 

linearly disjoint over F by the previous lemma. Conversely, suppose that 

Aand B are linearly disjoint over F. Let {ki ,... ,kn} K be an F-linearly 

independent set, and suppose that there are li∈L with ∑kili = 0. There 

are nonzero s ∈ A and t ∈B with ski∈A and ti∈B for each i. The set 

{ai,….,an } is also F-linearly independent; consequently, ∑ai ⊗bi≠ 0, 

since it maps to the nonzero element ∑ai ⊗bi∈K⊗F L under the natural 

map A ⊗FB  K ⊗FB. However, ∑ai ⊗bi is in the kernel of the mapA 

⊗FB  A[B]; hence, it is zero by the assumption that A and B are 

linearly disjoint over F. This shows that {ki} is L-linearly independent, 

soK and L are linearly disjoint over F. 

 

Example :  Suppose that K/F is an algebraic extension and that 

L/F is a purely transcendental extension. Then K and L are linearly 

disjoint over F; to see this, let X be an algebraically independent set over 

F with L = F(X). From the previous lemma, it suffices to show that K 

and F[X] are linearly disjoint over F. We can view F[X] as a polynomial 

ring in the variables x ∈X. The ring generated by K and F[X] is the 

polynomial ring K[X]. The standard homomorphism K ⊗F F[X]  K[X] 

is an isomorphism because there is a ring homomorphism T : K [X]  K 

⊗F F[X]induced by x 1⊗ x for each x ∈ X, and this is the inverse of φ. 
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Thus, K and F[X] are linearly disjoint over F, so K and L are linearly 

disjoint over F. 

The following theorem is a transitivity property for linear disjointness. 

 

9.2.8 Theorem : Let K and L be extension fields of F, and let E be a field 

with FEK. Then K and L are linearly disjoint over F if and only 

if E and L are linearly disjoint over F and K and EL are linearly disjoint 

over E. 

 

Proof. We have the following tower of fields. 

 

 

respectively. Each can be seen to be well defined by the universal 

mapping property of tensor products. The map f is an isomorphism by 

counting dimensions. Moreover, φ1and φ2 are surjective.  

 

The composition of these three maps is the standard map φ : K ⊗F L  

K[L]. First, suppose that K and L are linearly disjoint over F. Then φ is 

an isomorphism by Proposition 9.2.2. This forces both φ1and φ2 to be 

isomorphisms, since allmaps in question are surjective.  

 

The injectivity of φ2 implies that K andEL are linearly disjoint over E. If 

σ : E⊗F L  E[L] is the standard map,then φ1 is given on generators by 
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φ1 (k ⊗(e ⊗l)) = k ⊗σ- (e ⊗l); hence, ais also injective. This shows 

that E and L are linearly disjoint over F. 

Conversely, suppose that E and L are linearly disjoint over F and that 

K and EL are linearly disjoint over E.  

 

Then φ2and a are isomorphisms by Proposition 9.2.2. The map φ1is also 

an isomorphism; this follows from the relation between φ1 and σ above. 

Then φ is a composition of three isomorphisms; hence, φ is an 

isomorphism. Using Proposition 20.2 again, we see that K and L are 

linearly disjoint over F.  

 

Separability of field extensions 

One of the benefits of discussing linear disjointness is that it allows us to 

give a meaningful notion of separability for arbitrary field extensions. 

We first give an example that will help to motivate the definition of 

separability for non algebraic extensions. 

 

Example : Let KIF be a separable extension, and let LIF be a 

purely inseparable extension. Then K and L are linearly disjoint over F. 

To prove this, note that if char(F) = 0, then L = F, and the result is 

trivial. So, suppose that char(F) = p >0. We first consider the case where 

K/Fis a finite extension.  

 

By the primitive element theorem, we may writeK = F(a) for some a∈K. 

Let f (x) = min(F, a) and g(x) = min(L, a).Then g divides f in L[x]. If 

g(x) = α0 +∙∙∙∙+ αn-1x
n-1

 + x
n
, then for each i there is a positive integer ri 

with   
   

∈F. If r is the maximum of the ri , then (  
   

∈F for each i, so 

g(x)P ∈ F. Consequently, g(x)
pris a polynomial over F for which a is a 

root. Thus, f divides g)
prin F[x]. 

 

Viewing these two divisibilities in L[x], we see that the only irreducible 

factor of f in L[x] is g, so f is a power of g. The field extension KtP is 

separable; hence, f has no irreducible factors in any extension field of F. 

This forces f = g, so 
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From this, we obtain [KL : F]= [K: F] • [L: F], so K and L are linearly 

disjoint over F by Lemma 9.2.4. 

 

If K/F is not necessarily finite, suppose thatφ :K ⊗F L  K[L]is not 

injective. Then there are k1 ,... ,kn∈K and l1 ,... ,ln, /72 ∈L with φ(∑xi⊗ li) 

= 0. If K0 is the field generated over F by the ki , then the restriction of 

φ to K0⊗F Lis not injective, which is false by the finite dimensional 

case.Thus,φ is injective, so K arid L, are linearly disjoint over F. 

 

9.2.9 Definition: Let F be a field of characteristic p >0, and let Facbe 

analgebraic closure of F. Let 

 

 

The field F
1/P 

 is the composite of all purely inseparable extensions of 

F in Fac. It is, therefore, the maximal purely inseparable extension of F in 

Fac, so F
1/P 

is the purely inseparable closure of F in Fac. 

 

9.2.10 Definition: A transcendence basis X for a field extension K/F is 

said to be a separating transcendence basis for K / F if K is separable 

algebraic over F(X). If K has a separating transcendence basis over F, 

then K is said to be separably generated over F. 
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Example : Let K = F(x) be the rational function field in one variable 

over a field F of characteristic p. Then {x} is a separating transcendence 

basis for K/F'. However, {x
p
} is also a transcendence basis, butK/F(x

p
) is 

not separable. This example shows that even if K/Fis separably 

generated, not all transcendence bases of K/F are separating 

transcendence bases. 

 

Example : If K/Fis algebraic, then K is separable over F if and 

only if K/Fis separably generated, so the definition of separably 

generatedagrees with the definition of separable for algebraic extensions. 

We now prove the result that characterizes separability of arbitrary 

extensions. 

9.2.11 Theorem: Let K be a field extension of F. Then the following 

statements are equivalent: 

 

1. Every finitely generated subextension of K/F is separably generated. 

2. The fields K and F
1/P 

 are linearly disjoint over F. 

3. The fields K and F
1/P

 are linearly disjoint over F. 

Proof. (1)⇒ (2): To show that K and F
1/P 

 are linearly disjoint over 

F, it suffices to assume that K is a finitely generated extension of F. By 

statement I, we know that K is separably generated over F, so there is 

a transcendence basis {t1,...,tn} of K/F for which K is separable over 

F(t1,...,tn). By Example 9.2.7 , the fields F(t1,...tn) and F
1/P 

 are 

linearly disjoint over F. Also, K and F
1/P 

(t1,...,tn) are linearly disjoint 

over F(t1,...,tn) by Example below theorem 9.2.7 , since F
1/P 

 (t1,...,tn) is 

purely inseparable over F(t1,...,tn) and K is separable over F(t1,...,tn). 

Therefore, by Theorem 9.2.7, the fields K and F
1/P 

are linearly disjoint 

over F. 

(2) ⇒ (3): This is clear since F
1/P

 is a subfield of F
1/P . 

 

(3)⇒ (1): Suppose that K and F
1/P

 arc linearly disjoint over F. 
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 Let L = F(a1,….,an) be a finitely generated sub extension of K. We use 

induction on n to show that {a1,….,an} contains a separating 

transcendence basis for L/F. The case n = 0 is clear, as is the case where 

{a1,….,an} is algebraically independent, since then {a1,….,an} is a 

separating transcendence basis for L/F. We may then assume that n> 0 

and that {a1,….,an}is a transcendence basis for L/F, with m < n. The 

elements a1,….,am+1are algebraically dependent over F , so there is a 

nonzero polynomial f ∈ F[x1,….,xm+1] of least total degree with f 

(a1,….,am+1) = 0.  

 

The assumption that f is chosen of least degree forces f to be irreducible. 

Wefirst claim that f is not a polynomial in   
 
,….    

 
 If f (x1,….xm+i) 

=g(  
 
,….    

 
 ) for some g ∈ F[x1,….,xm+1] then there is an 

h∈F
1/P

[x1,….,xm+1] with f = h(x1,….,xm+1)
p
, since we are assuming that 

char(F) = p and every coefficient of g is a p
th

 power in F
1/P

. But this 

implies that h(a1,….,am+1) = 0. Write h(x1,….,xm+1)where the mj are the 

monomials occurring in h and the aj∈F
1/P

. Then∑αjmj (a1,….,am+1) = 0, 

so the mj(a1,….,am+1) are linearly dependent over F
1/P

.  

 

However, since each mj is a monomial in the xk , each mi (a1,….,am+1) ∈ 

LK. The assumption that K and F
1/P

 are linearly disjoint over F then 

forces the mj(a1,….,am+1) to be linearly dependent over 

F.IF∑j jmj(a1,….,am+1)= 0 with  j∈ F, then h' =∑j jmjisa polynomial 

with h   (a1,….,am+1 ) = 0 and deg(h  ) < deg(f). This contradiction verifies 

our claim that f is not a polynomial in   
 
,….    

 
Therefore, for some i 

the polynomial f is not a polynomial in   
 
.Let 

 

 

 

Then q(ai) = 0, and q is not a polynomial in t
P
. If we can show that q is 

irreducible over M7 then we will have proved that ai is separable over M. 

To see this, the set {a1,….,ai-1,ai+1,….,am+1}is a transcendence basis 

for L/F, so 
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as rings. Under the map that sends aj to xiand t to xi, the polynomial 

q is mapped to f. But f is irreducible over F, so q is irreducible 

in F[a1,….,ai-1,ai+1,….,am+1][t]. By Gauss' lemma, this means that q 

is irreducible over M7 the quotient field of F[a1,….,ai-1,ai+1,….,am+1]. 

Thus, we have shown that ai is separable over M so ai is separable over L 

= F(a1,….,ai-1,ai+1,….,an). The induction hypothesis applied to L' 

gives us a subset of {a1,….,ai-1,ai+1,….,an} that is a separating 

transcendence basis for Li/F. Since ai is separable over L', this is also a 

separating transcendence basis for L/F. 

 

9.2.12 Definition: A field extension K/F is separable if char(F) = 0 or 

if char(F) = p >0 and the conditions in Theorem 9.2.9  are satisfied; 

that is, K is separable if every finitely generated subextension of K/F is 

separably generated. 

 

We now give some immediate consequences of Theorem 9.2.9. 

9.2.13 Corollary : If K is separably ge7ierated, then K/F is separable. 

Conversely, if K/F is separable and finitely generated, then K/F is 

separably generated. 

 

9.2.14 Corollary: Suppose that K = F(a1,…, an) is finitely generated and 

separable over F. Then there is a subset Y of {a1,…, an} that is a 

separating transcendence basis of K F. 

 

Proof. This corollary is more accurately a consequence of the proof of 

(3)⇒(1) in Theorem 20.18, since the argument of that step is to show 

thatif K is finitely generated over F, then any finite generating set 

contains aseparating transcendence basis.  

Corollary 20.22Let F be a perfect field. Then any finitely generated 

extensionof F is separably generated. 
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Proof. This follows immediately from part 3 of Theorem 9.2.9, since 

F
1/P

=Fif F is perfect. 

 

9.2.15 Corollary: Let F E  K be fields. 

1. If K/F is separable, then E/F is separable. 

2. If E/F and K/E are separable, then K/F is separable. 

3. If K/F is separable and E/F is algebraic, then K/E is separable. 

Proof. Part 1 is an immediate consequence of condition 2 of Theorem 

9.2.9 . For part 2 we use Theorems 9.2.9  and 9.2.6. If E/F and K/E are 

separable, then E and F
1/P

) are linearly disjoint over F, and K and E
1/P

 

are linearly disjoint over E. However, it follows from the definition that 

F
1/P
E

1/P
, so EF

1/P
E

1/P
.  

 

Thus, K and EF
1/P

are linearly disjoint over E. Theorem 9.2.6  then shows 

that K and F
1/P

 are linearly disjoint over F, so K is separable over F. 

 

To prove part 3, suppose that K/F is separable and E/F is algebraic. 

We know that E/F is separable by part 1. Let L = E(a1,…, an) be a 

finitely generated subextension of K/E. If L' = F(a1,…, an), then by the 

separability of K/F there is a separating transcendence basis {t1,...,tm} 

for L'/F. Because E/F is separable algebraic, EL' = L is separable over 

L', so by transitivity, L is separable over F(t1,...,tm).  

 

Thus, L is separable over E(t1,...,tm), so {t1,...,tm} is a separating 

transcendence basis for L/E. We have shown that L/E is separably 

generated for every finitely generated subextension of K/E, which proves 

that K/E is separable. 

 

Example 20.24 Let F be a field of characteristic p, let K = F(x), the 

rational function field in one variable over F, and let E= F(x
P
). Then K/F 

is separable, but K/E is not separable. This example shows the necessity 

for the assumption that E/F be algebraic in the previous corollary. 

Example :  Here is an example of saparable extension that is not 



Notes 

35 

separably generated. Let F be a field of characteristic p, let x be 

transcendental over F, and let K = F(x)({x
1/P

n

 : n 1 }). Then K is the 

union of the fields F(x
1/P

n

), each of which is purely transcendental over 

F, and hence is separably generated. Any finitely generated subextension 

E is a subfield of F(x
1/P

n

) for some n and hence is separably generated 

over F by the previous corollary. Therefore, K/F is separable. But K is 

not separably generated over F, since given any f ∈ K, there is an n with 

f ∈ F(x
1/P

n

), so K/F(f) is not separable, since K/F(x
1/P

n

) is a nontrivial 

purely inseparable extension. 

 

Check your Progress-1 

1.  Define linearly disjoint . 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. State field extension 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

9.3 ZORN’S LEMMA 
 

9.3.1 DEFINITION:  (a) A relation   on a set S is a partial ordering if it 

reflexive, transitive, and anti-symmetric (a   b and b   a ⇒ a = b). 

 

(b) A partial ordering is a total ordering if, for all s, t ∈T , either s   t or t 

  s. 

 

(c) An upper bound for a subset T of a partially ordered set (S, ) is an 

element s ∈ Ssuch that t   s for all t ∈ T . 

 

(d) A maximal element of a partially ordered set S is an element s such 

that s   s'⇒s = s'. 
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A partially ordered set need not have any maximal elements, for 

example, the set of finite subsets of an infinite set is partially ordered by 

inclusion, but it has no maximal elements. 

 

9.3.2 LEMMA (ZORN): Let (S, ) be a nonempty partially ordered set 

for which every totally ordered subset has an upper bound in S. Then S 

has a maximal element. 

Zorn’s lemma is equivalent to the Axiom of Choice, and hence 

independent of the axioms of set theory. 

 

9.3.3 REMARK : The set S of finite subsets of an infinite set doesn’t 

contradict Zorn’s lemma, because it contains totally ordered subsets with 

no upper bound in S. 

The following proposition is a typical application of Zorn’s lemma—we 

shall use a * to signal results that depend on Zorn’s lemma (equivalently, 

the Axiom of Choice). 

 

9.3.4 PROPOSITION (*) Every nonzero commutative ring A has a 

maximal ideal (meaning, maximal among proper ideals). 

 

PROOF. Let S be the set of all proper ideals in A, partially ordered by 

inclusion. If T is a totally ordered set of ideals, then J =⋃I∈TIis again an 

ideal, and it is proper because if1 ∈ J then 1 ∈ I for some I in T, and I 

would not be proper. Thus J is an upper bound forT. Now Zorn’s lemma 

implies that S has a maximal element, which is a maximal ideal in 

A. 

 

9.4 FIRST PROOF OF THE EXISTENCE 

OF ALGEBRAIC CLOSURES 
 

An F -algebra is a ring containing F as a subring. Let(Ai)i∈I be a family of 

commutative F -algebras, and define ⊗FAi to be the quotient of the F -

vector space with basis∏       by the subspace generated by elementsof 

the form: 
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It can be made into a commutative F -algebra in an obvious fashion, and 

there are canonical homomorphisms Ai→⊗F Ai of F -algebras. 

 

For each polynomial f∈F[X], choose a splitting field Ef, and let Ω. 

(⊗FEf)/M where M is a maximal ideal in⊗FEf (whose existence is 

ensured by Zorn’s lemma). 

 

Note that F  ⊗FEf and M⋂ F = 0. As Ω has no ideals other than (0) and 

Ω, it isa field (see 1.2). The composite of the F –homomorphisms 

Ef→⊗F  Ef→ Ω being a homomorphism of fields, is injective. Since f 

splits in Ef , it must also split in the larger field Ω . The algebraic closure 

of F in Ω  is therefore an algebraic closure of F. 

 

9.5 SECOND PROOF OF THE EXISTENCE 

OF ALGEBRAIC CLOSURES 
 

We may assume F to be infinite. This implies that the cardinality of 

every field algebraic over F is the same as that of F. Choose an 

uncountable set Ξ of cardinality greater than that of F, and identify F 

with a subset of Ξ. Let S be the set of triples (E,+,·) with E  Ξ and (+,·)a 

field structure on E such that(E,+,·) contains F as a subfield and is 

algebraic over it. Write (E, +,·)  (E', +',·')if the first is a subfield of the 

second.  

 

Apply Zorn’s lemma to show that S has maximal elements, and then 

show that a maximal element is algebraically closed.  

 

9.6 THIRD PROOF OF THE EXISTENCE 

OF ALGEBRAIC CLOSURES 
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Consider the polynomial ring F[…,xf,…] in a family of symbols xf 

indexedby the nonconstant monic polynomials f∈F[X]. If 1 lies in the 

ideal I of F[…,xf,…]generated by the polynomials f(xf), then 

 

 

for some gi∈ F[…,xf,…] and some nonconstant monic fi 2 F[X]. Let E be 

an extensionof F such that each fi, i= 1,…,n, has a root αi in E. Under the 

F –homomorphismF[…,xf,…] E sending 

 

 

the above relation becomes 0 = 1. From this contradiction, we deduce 

that 1 does not lie inI , and so Proposition 6.4 applied to 

F[…,xf,…]/Ishows that I is contained in a maximalideal M of F[…,xf,…]. 

Let  Ω = F […,xf,…]/M . Then  is a field containing (a copyof) F in 

which every nonconstant polynomial in F[X] has at least one root.  

 

Repeat the process starting with E1 instead of F to obtain a field E2. 

Continue in this fashion to obtaina sequence of fields 

 

  

 

and let E = ⋃iEi. Then E is algebraically closed because the coefficients 

of any nonconstantpolynomial g in E[X] lie in Ei for some i, and so g has 

a root in Ei+1. Therefore, the algebraic closure of F in E is an algebraic 

closure of F. 

 

9.7 LET US SUM UP 
 

The difficulty in showing the existence of an algebraic closure of an 

arbitrary field F is in the set theory. After reviewing the statement 

ofZorn’s lemma, we sketch three solutions to the problem. 
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9.8 KEYWORDS 
 

Tensor product - The tensor product of V and W is the vector space 

generated by the symbols v ⊗ w, with v   V and w   W, in which the 

relations of bilinearity are imposed for the product operation ⊗, and no 

other relations are assumed to hold. 

Counting Dimension : In the study of fractals, 

Minkowski dimension (a.k.a. box-counting dimension) is a notion 

of dimension for fractals, measuring how complexity of detail changes 

with the scale at which one views the fractal. 

Extension : A Galois extension is a field extension that is both normal 

and separable 

 

9.9 QUESTIONS FOR REVIEW 
 

1. Let {x, y} be algebraically independent over F. Show that F(x) and 

F(y) are linearly disjoint over F.  

2. Let F be a perfect field, and let K/F be a field extension of 

transcendence degree 1. If K is not perfect, show that K/F is separably 

generated. 
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9.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

Provide definition – 9.2.1 

Provide definition – 9.2.12 

Provide statement– 9.3.2 

Provide explanation and  proof – 9.6 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

UNIT-10 APPLICATION OF 

TRANSCENDENTAL EXTENSIONS  I 
 

STRUCTURE 

10.0 Objectives 

10.1 Introduction 

10.2 Algebraic Varieties  

10.3 Algebraic Function Fields   

10.4 Let us sum up 

10.5 Keywords 

10.6 Questions For Review 

10.7 Suggested Reading and References 

10.8 Answers to Check your Progress 

 

10.0 OBJECTIVES 
 

Understand the concept and example of Algebraic Varieties 

Understand the concept and application of Algebraic Function Fields   

10.1 INTRODUCTION 
 

The most fundamental concept in transcendental field theory is that of a 

transcendence basis. In this section, we investigate this concept. We shall 

see that the notion of a transcendence basis is very similar to that of a 

basis of a vector space.  

 

10.2 ALGEBRAIC VARIETIES 
  

Field extensions that are finitely generated but not algebraic arise 

naturally in algebraic geometry. In this section, we discuss some of the 

basic ideas of algebraic geometry, and in this Section  we describe the 

connection between varieties and finitely generated field extensions. 
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Let k be a field, and let f ∈ k[xi ,... ,xn ] be a polynomial in the n 

variables x1 , . . xn . Then f can be viewed as a function from k
n
to k in the 

obvious way; if P = (a1,…. an ) ∈ k
n
 , we will write f (P) for f (a1,… an). 

 

It is possible for two different polynomials to yield the same function on 

k
n. 

For instance, if k = 𝔽2 , then x
2
 — x is the zero function on k

1
 , 

although it is not the zero polynomial. However, if k is infinite, then f ∈ 

k[x1 ,...,xn] is the zero function on k
n 

if and only if f is the zero 

polynomial. 

 

10.2.1 Definition:   

Let k be a field, and let C be an algebraically closed field containing k. If 

S is a subset of k[x1,...,,xn], then the zero set of S is 

 

Z(S) = {(a1 ,..., an ) ∈C
n
: f (al , ..., an ) = 0 for all f ∈ S}. 

 

10.2.2 Definition:   

Let k be a field, and let C be an algebraically closed field containing k. 

Then a set V C
n
 is said to be a k-variety if V = Z(S) for some set S of 

polynomials in k[x1 ,...,xn]. The set 

V(k) = {P ∈k
n
 : f (P) = 0 for all f ∈ S} 

called the set of k-rational points of V. 

 

 
Before looking at a number of examples, we look more closely at the 

definitions above. The reason for working in C
n 

instead of k
n 

is that a 

polynomial f ∈ k[x1,… ,xn]may not have a zero in k 
n
but, as we shall 

see below, f does have zeros in C'
n
.  

 

For example, if f = x
2
 + y

2
 +1 ∈ℝ[x, y],then f has no zeros in ℝ2

 , while f 

has the zeros (0, ±i), among others, in 2
 . Classical algebraic geometry is 

concerned with polynomials over  . On the other hand, zeros of 

polynomials over a number field are of concern in algebraic number 

theory. Working with polynomials over a field k but looking at zeros 

inside C
n
allows one to handle both of these situations simultaneously. 
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We now look at some examples of varieties. The pictures below show 

theℝ -rational points of the given varieties. 

 

Example: Let f(x,y) = y - x
2
 . Then Z(f) = {(a,a

2
) : a ∈ C}, a 

k-variety for any k  C. 

 

Example: Let f (x , y) = y
2
 — (x

3
 — x). Then Z(f) is a k-variety for 

any k  C. This variety is an example of an elliptic curve, a class of 

curvesof great importance in number theory. 

 
 

Example: Let f(x, y) = x
n
 + y

n
 — 1 ∈ Q[x, y], the Fermat curve. 

Fermat's last theorem states that if V = Z(f) and n   3, then V has no 

Q-rational points other than the "trivial points," when either x = 0 or 

y= O. 

 

Example:  Let V = {(t
2
 , t

3
 ) : t ∈C}. Then V is the k-variety Z(y 

2
 - x

3
 ). 

The description of V as the set of points of the form (t
2
, t

3
) is called a 

parameterization of V. We will see a connection between parameterizing 

varieties and field extensions in Section 22. 

 

Example:  Let V — (t
3
 , t

4
 , t

5
 ) : L ∈ C}. The, it V is a k-variety, since V 

is the zero set of {y
2
 — xz, z

2
 — x

2
y}. To verify this, note that each point 

of V does satisfy these two polynomials. Conversely, suppose that (a, b, 

c) ∈ C
3
 is a zero of these three polynomials. If a = 0, then a quickcheck 

of the polynomials shows that b c = 0, so (a, b, c) ∈ V. If a ≠ 0then 
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define t = b/a. From b
2
 = ac, we see that c = t

2
a. Finally, the equationc

2
 = 

a
2
b yields t

4
a

2
 = a

3
 t, so a = t

3∈ V. 

Example:  Let S
n
 = {(a1,…, an ) ∈C

n
: ∑   

  
    }. Then V = 

Z(-1 +∑   
  

   }.), so -V is a k-variety. 

 

Example:  Let V be a C-vector subspace of C
n
. We can find a matrix 

A such that V is the null space of A. If A = (αij), then a point (a1,…, an) 

is in V if and only if ∑jαijaj = 0 for each i. Thus, V is the zero set of 

the set of linear polynomials ∑jαijxj, so V is a C-variety. If each αij lies 

in a subfiekl k, then V is a k-variety. 

 

Example:  Let SLn(C) be the set of all n x n matrices over C of 

determinant 1. We view the set of all n xn matrices over C as the set C
n2

 

of n
2
-tuples over C. The determinant det = det(xij) is a polynomial in the 

n
2
 variables xij, and the coefficients of the determinant polynomial are 

±1. We then see that SLn(C) = Z(det -1) is a k-variety for any sub fieldk 

of C. For instance, if n = 2, then 

 

 

We can define a topology on C
n
, the k-Zariski topology, by defining a 

subset of C
n
to be closed if it is a k-variety. The following lemma shows 

that this does indeed define a topology on C
n
. Some of the problems 

below go into more detail about the k-Zariski topology. 

 

10.2.3 Lemma The sets {Z(S): S k[x1,...,xn)} are the closed sets of 

a topology on C
n
; that is, 

 

 

 

Proof. The first two parts are clear from the definitions. For the third, let 

P ∈Z(S). Then f (P) = 0 for all f ∈S, so (fg)(P) = 0 for all fg ∈ST. 
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Thus, Z(S) Z(ST). Similarly, Z(T) Z(ST), so Z(S) Z(T) Z(ST). 

For the reverse inclusion, let P ∈Z(ST). If P  Z (S), then there is anf ∈ 5 

with PI') ,L O. If g ∈T, then 0 = (f O (P) f(P)g(P), so g(P)= 0, 

which forces P ∈Z(T). Thus, Z(ST) Z(S) ⋃Z(T). This proves that 

Z(S) U Z(T) = Z(ST). 

 

For the fourth part, the inclusion Z(⋃αSα) ⋂αZ (Sα) follows from 

part 1. For the reverse inclusion, take P ∈⋂αZ (Sα) . Then P ∈ Z(Sα) for 

each α, so f(P) = 0 for each f ∈ Sα. Thus, P ∈ Z(⋃α Sα). 

 

Example : Let GLn(C) be the set of all invertible n n matrices over 

C. Then GLn,(C) is the complement of the zero set Z(det), so GLn(C) is 

an open subset of C
n2

 with respect to the k-Zariski topology. We can 

view GLn(C) differently in order to view it as an algebraic variety. Let t 

be a new variable, and consider the zero set Z(t det -1) in C
n2+ 1

 .  

 

Then the map GLn(C) Z(t det -1) given by P (P, 1/ det(P)) is a bijection 

between GLn (C) and Z(t det -1). If we introduce the definition of a 

morphism ofvarieties, this map would turn out to be an isomorphism. 

Starting with an ideal I of k[x1,…xn], we obtain a k-variety Z(I). We 

can reverse this process and obtain an ideal from a k-variety. 

 

10.2.4 Definition :  Let V C’
n
. The ideal of V is 

 

 

 

 

 

If f ∈ k[xi,…., xn ] and V  C'n, then f can be viewed as a function 

from V to k. Two polynomials f and g yield the same polynomial 

function on V if and only if f - g ∈ I(V); hence, we see that k[V] can be 

thought of as the ring of polynomial functions on V. 

 

One of the main techniques of algebraic geometry is to translate back 

and forth from geometric properties of varieties to algebraic properties of 
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their coordinate rings. We state Hilbert's Nullstellensatz below, the most 

fundamental result that connects the geometry of varieties with the 

algebra of polynomial rings. 

 

Let A be a commutative ring, and let I be an ideal of A. Then the radical 

of I is the ideal 

 

 

 

If I = Ï, then I is said to be a radical ideal. A standard result of 

commutative ring theory is that fi is the intersection of all prime ideals of 

A containing T  

 

10.2.5  Lemma :If V is any subset of C'n, then I(V) is a radical ideal of 

k[x1,…., xn ] 

 

Proof. Let f ∈ k[x1,... xn] with fr ∈ I(V) for some r. Then f
r
(P) = 0 

for all P ∈V. But f
 r
. (P) = (f(P))

r
so f (P) = O. Therefore, f ∈I(V); 

hence, .T(V) is equal to its radical, so /(V) is a radical ideal. 

 

10.2.6 Lemma: The following statements are some properties of ideals 

of subsets of C
n 

 

 

 

 

 

 

Proof. The first two parts of the lemma are clear from the definition of 

I(V). For the third, let V be a subset of C. lf f ∈ I(V), then f(P) = 0 for 

all P ∈ V, so P ∈ Z(I(V)), which shows that V Z(/(V)). Suppose that 

V = Z(S) for some subset S ∈ k[x1,…, xn]. Then S  I(V), so Z(/(V))  

Z(S) = V by the previous lemma. Thus, V = Z(/(V)). Conversely, if 

V = Z(I(V)), then V is a k-variety by definition. 
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In the lemma above, if J is an ideal of k[x1,…, xn], we have J  I(Z(J)), 

and actually √ I(Z(J)), since /(Z(J)) is a radical ideal. The following 

theorem, Hilbert', Nullstellensatz, shows that T(Z(J)) is always equal to 

√  

 

10.2.7 Theorem (Nullstellensatz) Let J be an ideal of k[x1,…, xn], 

and let V = Z(J). Then I(V) =√  

 

10.2.8 Corollary : There is a 1-1 inclusion reversing correspondence 

between the k-varieties C
n
 and the radical ideals of [x1,…, xn]given by 

V ↦1(V). The inverse correspondence is given by J↦ Z(J) 

 

Proof. If V is a k-variety, then the previous lemma shows that V = 

Z(I(V)). Also, the Nullstellensatz shows that if I is a radical ideal, thenJ = 

I(Z(J)). These two formulas tell us that the association V ↦I(V) is 

a bijection and that its inverse is given by J↦ Z(J). 

 

Another consequence of the Nullstellensatz is that any proper ideal 

definesa nonempty variety. Suppose that / is a proper ideal of k[x1,…, 

xn].If V = Z(J), then the Nullstellensatz shows that I(V) =√  . Since J is 

a proper ideal, the radical is also proper. However, if Z(J) = ∅, then 

I(Z(J)) = k[x1 , xn]. Thus, Z(J) is nonempty. 

 

Example : Let f ∈ k[xi ,... ,xn] be a polynomial, and let V = Z(f). 

If f =   
  …   

  is the irreducible factorization of f, then I(V) =√( ) 

by the Nullstellensatz. However, we show that √( ) = (p1∙∙∙∙ pt) for, if 

g ∈√( )), then g
m
 = fh for some h ∈ k[xi ,... ,xn]and some in > O. Each 

pi then divides g
m

; hence, each pi divides g. Thus, g ∈(p1∙∙∙∙ pt). For the 

reverse inclusion, p1∙∙∙∙ pt∈√( ), since if r is the maximum of the ri, 

then(p1∙∙∙∙ pt)
r∈(f). 

 

If f ∈ k[xi ,... ,xn]is irreducible, then√( )) = (f), so the coordinate 
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ring of Z(f) is k[xi ,... ,xn]/(f). For example, the coordinate ring of Z(y - 

x
2
 )  C

2
 is k[x, y]/(y - x

2
 ). This ring is isomorphic to the polynomial 

ringk[t]. Similarly, the coordinate ring of Z(y
2
-x3 ) is k[x, y]/(y

2
-x

3
 ). 

Thisring is isomorphic to the subring k[t
2
, t

3
 ] of the polynomial ring 

k[t]; anisomorphism is given by sending x to t
2
 and y to t

3
. 

 

10.2.9 Definition Let V be a k-variety. Then V is said to be irreducible if 

V is not the union of two proper k-varieties. 

 

Every k-variety can be written as a finite union of irreducible 

subvarieties,as Problem 7 shows. This fact reduces many questions about 

varieties tothe case of irreducible varieties. 

 

Example : Let V be an irreducible k-variety. By taking complements,we 

see that the definition of irreducibility is equivalent to the conditionthat 

any two nonempty open sets have a nonempty intersection. 

 

Therefore, if U and U' are nonempty open subsets of V, then U ⋂U'≠∅. 

One consequence of this fact is that any nonempty open subset of V is 

dense in V, as we now prove. If U is a nonempty open subset of V, and if 

C is the closure of U in V, then U n (V - C) = ∅. The set V -C is open, 

so one of U or V - C is empty. Since U is nonempty, this forces V -C = 

∅,so C = V. But then the closure of U in V is all of V, so U is dense in 

V. This unusual fact about the Zariski topology is used often in algebraic 

geometry. 

 

10.2.10 Proposition: Let V be a k-variety. Then V is irreducible if and 

only if I(V) is a prime ideal, if and only if the coordinate ring k[V] is an 

integral domain. 

 

Proof. First suppose that V is irreducible. Let f, g ∈k[x i ,..., x n] with 

fg ∈I(V). Then I = I(V)+ (f) and J = I(V) + (g) are ideals of k[xi ,... 

,xn]containing I(V); hence, their zero sets Y = Z(I) and Z = Z(J) are 

contained in Z(I(V)) = V. Moreover, I J  I(V), since fg ∈I(V), so Y 

⋃Z=Z(IJ) contains V. This forces V = Y ⋃Z, so either Y = V or Z = V, 
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since V is irreducible. If Y = V, then I I(Y) = I(V), and if Z = V, then J 

I(Z) = I(V). Thus, either f ∈ I(V) or g ∈I(V), so I(V) is a prime ideal of 

k[xi ,... ,xn]. 

 

Conversely, suppose that (V) is prime. Cf V = Y⋃Z for sonic k-varieties 

Y and Z, let I = I(Y) and J = I(Z). Then IJ  I(YUZ) = I(V), so either 

I I(V) or J I(V). This means that V Z(I) = Y or V Z(J) = Z. 

Therefore, Y = V or Z = V, so V is irreducible.  

 

10.2.11  Definition:  Let V be a k-variety. Then the dimension of V, 

denoted dim(V), is the largest integer n such that there is a chain. 

 

Y0  Y1 ∙∙∙∙  Yn V 

 

of irreducible k-subvarieties of V. 

 

While it is not obvious, there is indeed a maximum among the lengths 

of chains of irreducible subvarieties of any variety. In fact, if V C
n
, 

then dim(V)   n. 

 

The definition above is purely topological. However, the dimension of a 

k-variety can be determined with purely algebraic methods. One way to 

determine the dimension of a k-variety is given in the proposition below. 

 

10.2.12 Proposition :  Let V be a k-variety. Then dim(V) is the maximum 

nonnegative integer n such that there is a chain 

P0  P1 ∙∙∙∙  Pn 

of prime ideals of k[V]. 

 

Proof. Suppose that Y0  Y1 ∙∙∙∙  Yn V is a chain Irreducible subsets of 

V. Then 

I(V)  I(Y)  ∙∙∙∙ I (Y0) 

 

is a chain of prime ideals of k[xi ,... ,xn] by the previous proposition. 

Moreover, the inclusions are proper by the Nullstellensatz. By taking 



Notes 

50 

images in the quotient ring k[V] = k[x1 ,... ,xn]/I(V), we get a chain of 

prime idealsof length n. However, if we have a chain of prime ideals of 

k[V] of length n, then we get a chain I(V)  Q0  Q1 ∙∙∙∙  Qnof prime 

ideals of kk[x1 ,... ,xn]. Taking zero sets gives a chain 

 

Z (Qn)  ∙∙∙∙  Z (Q0)  Z (I(V)) = V 

of irreducible k-subvarieties in V. The maximum length of a chain of 

irreduciblek-subvarieties of V is then the maximum length of a chain 

ofprimeideals of k[V]. 

 
If A is a commutative ring, then the supremum of integers n such that 

there is a chain of prime ideals of A of length n is called the dimension 

of A. The proposition says that dim(V) = dim(k[V]) if V is a k-variety. 

Calculating the dimension of a k-variety by either the definition or by 

useof the proposition above is not easy.  

 

Check your Progress-1 

 

1. Define the terms a. zero set 

b. k-rational points 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. State the concept of ideal 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Explain the concept of Dimension 

__________________________________________________________

__________________________________________________________

_____________________________________________________ 

10.3 ALGEBRAIC FUNCTION FIELDS 
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In this section, we study one of the most important classes of field 

extensions,those arising from algebraic geometry. We will continue to 

use the notation defined in Section 21. The point of this section is to 

show how fieldtheoretic information can be used to obtain geometric 

information about varieties. 

 

10.3.1 Definition  

Let V be an irreducible k-variety. Then the function field 

k(V) of V is the quotient field of the coordinate ring k[V]. 

 

This definition is meaningful because if V is irreducible, then I (V) is 

a prime ideal, so k[V] = k[xi ,... ,xn]/I(V) is an integral domain. The 

function field k(V) of a variety V can be viewed as a field of functions on 

V in the following way. Each f ∈ k[V] is a polynomial function from V 

toC.  

A quotient f / g of elements of k[V] then defines a function from V-

Z(g)to C. Now, V -Z(g) is an open subset of V; hence, it is a dense subset 

of V. The elements of k(V) are then rational functions defined on an 

open, dense subset of V; the density follows. 

 

Example  Let V = Z(y - x
2
 ). Then the coordinate ring of V is 

k[x, y]/(y -x
2
 ), which is isomorphic to the polynomial ring k[t] by 

sendingt to the coset of x in k[V]. Therefore, the function field of V is the 

rationalfunction field k(t). 

 

Example : Let V = Z(y
2
-x

3
 ). Then k(V) is the field k(s, t), where 

s and t are the images of x and y in k[V] = k[x, y]/(y
2
-x

3
 ), respectively. 

Note that t 
2
 = 5

3
 . Let z = t/s. Substituting this equation into t

 2
 = s

3
 

and simplifying shows that s = z2 , and so t = z
3
 . Thus, k(V) = k(z). The 

element z is transcendental over k, since if k(V)/k is algebraic, then k[V] 

is a field by the argument in Example 19.11, so (y
2
-x

3
) is a maximal ideal 

of k[x, y]. However, this is not true, since (y
2
-x

3
) is properly contained in 

the ideal (x, y). Thus, k(V) is a rational function field in one variable over 

k. Note that k[V] is isomorphic to k[x
2
 , x

3
], a ring that is not isomorphic 

to a polynomial ring in one variable over k. 
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Example:  If V is an irreducible k-variety, then V gives rise to a field 

extension k(V) of k. We can reverse this construction. Let K be a finitely 

generated field extension of k. Say K = k(a1,∙∙∙∙an ) for some ai∈K. Let 

P = ∈ k[xi ,... ,xn]: f(a1,...,an) = 0}. 

 

Then P is the kernel of the ring homomorphism φ: k[xi ,... ,xn] K 

that sends xi to ai , so P is a prime ideal. If V = Z(P), then V is an 

irreducible k-variety with coordinate ring k[xi ,... ,xn]/P≅ k[a1,...,an], 

so the function field of V is K. Note that if we start with an irreducible k 

variety V and let K = k(V), then the variety we get from this construction 

may not be V. Therefore, the processes of obtaining field extensions 

from varieties and vice versa are not inverses of each other. 

 

The next theorem gives the most useful method for computing the 

dimension of a variety. We do not give the proof, since this would go 

past the interests of this book.  

 

10.3.2 Theorem : Let V be an irreducible k-variety. Then the dimension 

of V is equal to the transcendence degree of k(V)/k. 

 

Example : The dimension of the k-variety C
n
is n, since the function 

field of C
n
is k[xi ,... ,xn), which has transcendence degree n over k. 

 

Example: If V = Z(y -x
2
 ), then k[V] = k[x, y]/(y -x

2
 ) ≅k[x], so 

k(V) ≅ k(x) has transcendence degree 1 over k. Thus, dim(V) = 1. More 

generally, if f (x, y) is any irreducible polynomial in k[x, y] and V = Z(f), 

then k[V] = k[x , (f) = k[s , t] , where s and t are the images in k[V] of x 

and y, respectively. Therefore, k(V) = k(s,t). The set {s, t} is algebraically 

dependent over k, since f (s,t) 0. However, s or t is transcendental over 

k, for if s is algebraic over k, then there is a g ∈k[x] with g(s) = 0.  

 

Viewing g(x) as a polynomial in x and y, we see that g ∈1(V) = (f). 

Similarly, if t is algebraic over k, then there is an h(y) ∈ k[y] with h ∈(f). 

These two inclusions are impossible, since g(x) and h(y) are relatively 
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prime. This proves that either {s} or {t} is a transcendence basis for k(V), 

so k(V) has transcendence degree 1 over k. 

 

Example : Let f E k[xi ,... ,xn] be an irreducible polynomial and set 

V = Z(f). Then dim(V) = n - 1. To see this, we showed in Example 

19.12 that the quotient field of k[xi ,... ,xn]/(f ) has transcendence degree 

n - 1 over k. But, this quotient field is the function field k(V) of V. Thus, 

Theorem 22.5 shows that dim(V) = n - 1. Note that the argument in the 

previous example is mostly a repeat of that given in Example 19.12 in 

thecase of two variables. 

 

We now give some properties of the function field of an irreducible 

variety. We first need two definitions. If Klk is a field extension, then K 

is a regular extension of k provided that K/k is separable and k is 

algebraically closed in K. If P is a prime ideal of k[x1 ,... ,xn], then P is 

absolutely prime if for any field extension L/k the ideal generated by P in 

L[x1 ,... ,xn] is a prime ideal. 

 

Example :  Let P be an absolutely prime ideal of k[xi ,... ,xn], and let 

V = Z(P).Let L be any field extension of k contained in C. Then we can 

view V as an L-variety. The coordinate ring of V considered as an L-

varietyis L[x1 ,... ,xn]/I, where I is the ideal of V computed in L[x1 ,... 

,xn]] . Theideal I contains P, so I contains the ideal generated by P in 

L[xi ,... ,xn]. 

 

Since P is absolutely prime, the Nullstellensatz tells us that I is the ideal 

generated by P. Consequently, V is irreducible as an L-variety. 

 

If k = ℝand P = (x
2
 + y2) ∈ℝ[x,y], then V = Z(P) is an irreducible 

ℝ-variety hut V is not irreducible as a  -variety, since the ideal of V in 

 [x,y] is (x
2
 + y2) = (x + iy)(x -iy). 

 

10.3.3 Theorem : Let V be an irreducible k-variety. Then k(V) is a 

finitely generated extension of k. Moreover,k(V)/k is a regular extension 

if I(V) is absolutely prime. 
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Proof. The field k(V) is the quotient field of k[V] = k[x1 ,... ,xn]/[V].The 

ring k[V] is generated over k as a ring by the images of the xi, so k(V)is 

generated as a field extension over k by the images of the xi. This 

provesthat k(V) is a finitely generated extension of k. 

 

Suppose that I(V) is absolutely prime. We need to show that k(V)/k is 

separable and that k is algebraically closed in k(V). For this, we first 

showthat if L is any extension of k, then k(V) and L are linearly disjoint 

overk. To see this, note that 

 

 

 

where Q = I(V)L[x1 ,... ,xn]. This isomorphism is given on generators by 

(f I(V)) ⊗l↦ fl + Q. The ring L[x1 ,... ,xn]/Q contains an isomorphic 

copy of k[V] = k[x1 ,... ,xn]/I(V), and it is the ring generated by L and 

this copy of k[V]. By the assumption that I(V) is absolutely prime, Q is 

a prime ideal, so L[x1 ,... ,xn]/Q is a domain. If K is the quotient field of 

this domain, there are isomorphic copies of k[V] and L inside K, and the 

tensor product k[V] ⊗kL is isomorphic to a subring of K. Therefore, 

k[V]and L are linearly disjoint over k, so k(V) and L are linearly disjoint 

over k. To see that k(V) is separable over k, set L =k
1/p . 

 

From what we have shown, k(V) and k
1/p . are linearly disjoint, so k(V) 

is separable over k. Let k' be the algebraic closure of k in k(V). By setting 

L = k', since k(V) and k' are linearly disjoint over k, it follows that k' and 

k' are linearly disjoint over k, so k' = k. Thus, k is algebraically closed in 

k(V). This finishes the proof that k(V) is a regular extension of k. 

 

10.3.4 Corollary Let f E k[x1 ,... ,xn] be an absolutely irreducible 

polynomial.If V = Z(f), then V is an irreducible k-variety, and k(V) is a 

regular extension of k. 

 

Proof. Since f is irreducible in k[x1 ,... ,xn], the principal ideal (f) is 

prime; hence, I(V) = (f) is prime. Thus, V is an irreducible k-variety. 
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Moreover, (f) is absolutely prime, since f is absolutely irreducible. By the 

previous theorem, k(V) is a regular extension of k. 

 

Example : Let f = y
2
- (x

3
-x) and V = Z(f). If L/k is any field 

extension, then f is irreducible in L[x, yj, since x
3
 - xis not a square in 

L[x]. Therefore, k(V) is a regular extension of k. 

 

Example : If f = x
2
 ± y

2∈ℝ[x, y] and V = Z(f), then f is irreducible over 

ℝ, but f is not irreducible over C, since f = (x +iy)(x- iy).The field 

extension ℝ(V)/ℝ is therefore not regular. This extension is separable, 

since char(R) = O. In ℝ(V), we have x
2
 + y

2
 = 0, so (x/y)

2
 = -1.Thus, C is 

a subfield of ℝ(V), which shows that R is not algebraically closed in 

ℝ(V). 

 

A natural question to ask is what geometric information about a variety 

can be determined from field theoretic information about its function 

field. We now investigate another. 

 

10.3.5 Definition : An irreducible k-variety V is said to be rational if 

k(V) is a purely transcendental extension of k. 

 

Recall that a purely transcendental extension with finite transcendence 

degree is often called a rational extension. Thus, a k-variety V is rational 

if k(V)/k is a rational extension. A fundamental problem of algebraic 

geometry is to determine when a variety is rational. The problem of 

rationality has a more geometric formulation. Recall from vector calculus 

that a curve in ℝ2
 can be parameterized in the form x = f (t) and y = g(t), 

where f and g are real-valued functions; that is, the curve consists of the 

points (Pt), g(t)) as t ranges over R. The functions f and g can be 

completely general, and even with a curve defined by polynomial 

equations, the functions f and g may be transcendental. For example, the 

most commonparameterization of the unit circle is x = cos t and y = sin t.  

 

In the case of algebraic varieties, we are interested in parameterizations 

involving polynomial or rational functions. 
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Example : Let V be the zero set of x
2
+ y

2
- 1, an irreducible kvarietyin C

2
 

. As noted above, if k = ℝ, then the curve V has a transcendental 

parameterization. We wish to find a parameterization of V in terms of 

rational functions. We can do this as follows. 

 

 

Pick a point on V, for instance P = (-1,0). For a point (x, y) on V, let 

t be the slope of the line connecting these two points. Then t y/(x + 1). 

If we solve for y and substitute into the equation x
2
 + y

2
- 1 = 0, we can 

solve for x in terms of t. Doing this, we see that 

 

 

Moreover, we can reverse this calculation to show that 

 

 

for, given (x, y) ∈V with (x, y) ≠(-1,0), solving for t in the equation 

 

which are elements of C, since 1+ x≠0 and C is algebraically closed, so C 

contains a square root of any element. With either of these values of t, we 

see that 2t/(1+ t
2
) t(1 +x), and we can check that x

2
 + (t(1 + x))

2
 = 1; 

hence, y = 2t/(1+ t
2
) if the sign of the square root is chosen appropriately. 

So, this parameterization of V picks up all but one point of V. There is 

no value of t that yields the point P.  
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Intuitively, we would need t =   to getx = -1 and y = 0. Starting with 

any point Q on the curve and followingthis procedure will yield a 

parameterization of V - {Q}. 

 

Example : For another example of a parameterization, let Y = 

Z(y
2
-x

3
 ). If we start with the point (0,0) and follow the procedure of 

Example 22.15, we obtain the parameterization x = t
2
 and y = t

3
 given in 

Example 21.6. With this parameterization, we get all points of Y; that is, 

 

Y = {(t2 ,t3 ) : t ∈ C} . 

 

Not every algebraic curve can be parameterized with rational functions. 

To give an intuitive feel for why this is true, let V be the zero set of 

y
2
-(x

3
-x). Pick P = (0,0) on V. If we follow the procedure above, we 

would get t= y/x, or y = tx. Substituting this into the equation y
2
 = x

3
- 

xyields t
2
x

2
 = x

3
- x, or x

2
-t

2
x - 1 = 0. This has the two solutions 

 

 

neither of which are rational functions in t. While this does not prove that 

Y cannot be parameterized, it does indicate that Y is more complicated 

than the two previous examples. In Proposition 22.18, we show that an 

Irreducible curve V can be parameterized if and only if the function Field 

k(V) is rational over k. A proof that   (V)/  is not rational if V = Z(y
2
- 

x
3
+x) is outlined in Problem 23.6. It is nontrivial to show that, a field 

extension K/F is not rational when F is algebraically closed. If F is not 

algebraically closed, then it is easier to prove that an extension of F is 

not rational. 

 

We now relate the concept of parameterization to that of rationality. We 

make precise what it means to parameterize a variety. We will restrict to 

curves. An algebraic variety of dimension 1 is said to be a curve. 

 

10.3.6 Definition : 

Let V  V' be a curve defined over k. Then V can 
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be parameterized if there are rational functions fi (t) ∈k(t) such that 

{(f i (t),... , f n (t)) : t ∈ 01} is a dense subset of V with respect to the k- 

Zariski topology. 

 

From Theorem 10.3.2, the function field of a curve defined over a Field 

k has transcendence degree 1 over k. We could define what it means to 

parameterize a variety of dimension greater than 1, although we will not 

do so. 

 

To clarify the definition above, if f(t) is a rational function, say f(t) 

g(t)/h(t) with g, h ∈k[t]. Then f (a) is defined for a ∈C only if h(a)≠O. 

The polynomial h has at most finitely many roots, so f(a) is defined at all 

but finitely many a ∈C. In the definition of parameterization of a curve, 

it is being assumed that the point (f1(t), , fn (t)) exists only when each 

fi (t) is defined. 

 

10.3.7 Proposition: Let V be an irreducible curvedefined over k. Then V 

can be parameterized if and only if the function field k(V) is rational over 

k. 

 

Proof. First, suppose that V C
n
can be parameterized. Letf (t),…. fn (t) 

∈k(t) such that U = {(fi(t), , fn (t)) : t ∈C} is a dense subset of V. Define 

cio : k[xi ,... ,xn] (t) by sending x i to fi (t). Then φ uniquely defines a k-

hornomorphism. The kernel of φ consists of all polynomialsh, (xi ,... 

,xn)with h( fi (t),…., fn (t)) = 0. For such an h, we have h(P) = 0 for all P 

∈U. Therefore, U  Z(h), so by density we have V Z(h). Thus, h ∈I(V). 

It is clear that 1(V)  ker(φ); hence, we see thatker(φ) = 1(V), so cio 

induces an injective k-homomorphism φ’ : k[V] k(t). 

 

The map φ’ then induces a k-homomorphism k(V) k(t), so k(V) is 

isomorphicto an intermediate field of k(t)/k. By Liiroth's theorem, which 

weprove below, k(V) is a rational extension of k. 

 

For the converse, suppose that k(V) = k(t) for some t We abuse notation 

by writing x i for the image of x i in k[V]. We have xi =fi (t) for some 
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rational function fi , and we can write t = g(xi ,... ,xn)/h(xi ,... ,xn)for 

some polynomials g, h. If P ∈ V, let a = g(P)/h(P), provided that h(P)≠O. 

Then P = (f1(a),…fn(a)) by the relations between the x, and t. On the 

other hand, given a ∈C, if each f1 (a) is defined, let Q = (fi (a), . . , fn(a)) 

 

Then u(Q) = 0 for all u∈(V), again by the relations between the xi and t. 

Thus, Q E Z(I(V)) = V. The points of V not of the form (fi (a), . . , fn(a)) 

all satisfy h(P) = O. This does not include all points of V, or else h ∈ 

I(V), which is false by the choice of h. Thus, V ⋂Z(h) is a finite set, so 

{(f (t), , fri (t)) : t E C} contains all but finitely many points of V, so it is 

a dense subset of V. The equations xi= fi (t) thus give a parameterization 

of V. 

 

We now finish the proof of above  Proposition by proving Liiroth's 

theorem. 

 

Theorem 10.3.8  (Liiroth): Let k(t) be the rational function field in one 

variable over a field k, and let F be a field with k  F   kW, Then 

F = k(u) for some u ∈F. Thus, F is purely transcendental over k. 

Proof. Let K = k(t) , and take 𝑣∈F—k. We know that [K: k(v)] <  , so 

[K: F] <  . Let f(x) = x
n
+l

n-1
 x

n-1
+∙∙∙∙ + l0 be the minimal polynomial of 

t over F. Then [K:F] =n.  

 

Since t is transcendental over k, some ti∈ k. Let u = li, and set m [K : 

k(u)]. Therefore, m   n, since k(u) F. If we show m   n, then we will 

have proved that F = k(u). All li∈k(t), so there are polynomials c1(t), , 

cn(t) and d(t) in k[t] with li = cj(t)/d(t), and such that {d, c1, . . , cn} is 

relatively prime. Note that cn, (t) = d(t), since f is monic, and u = 

ci(t)/d(t), so m   max {deg(ci), deg(d)} by Example 1.17. This may be an 

inequality instead of an equality because ci and d may not be relatively 

prime. Let 

 

f(x, t) = d(t) f (x) = cn (t)x
n
 +cn - 1 (t)x

n-1
 + ∙∙∙∙ + c0 (t). 

 

Then f (x ,t) ∈k[x, t], and f is primitive as a polynomial in x. Moreover, 
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Deg x (f(x, t)) = n, where deg„ refers to the degree in x of a polynomial, 

and deg t (f(x,t))  m, since ci and d are both coefficients of f. By dividing 

out gcd(ci, d), we may write u = g(t)/ h(t) with 9, h, ∈k[t] relatively 

prime. Now t is a root of' g(x) - uh(x) ∈ P(x), so we may write 

 

g(x) - uh(x) = q(x) f (x)      (A) 

with q(x) ∈F[x]. Plugging u = g(t) / h(t) into Equation (A), we see that 

g(x)h(t) - g(t)h(x) is divisible by f (x, t) in k(t)[x] as F  k(t). These 

polynomials are in k[x, t], and f is primitive in x, so we can write 

 

g(x)h(t) - g(t)h(x) = r(x , t) f (x , t) 

 

with r(x , t) ∈ k[x,t]. The left-hand side has degree in t at most m, since 

m = max {deg(g), deg(h)}. But we know that the degree of f in t is at 

least rn. Thus, r(x,t) = r(x) ∈k[x].In particular, r is primitive as a 

polynomial in k[t][x]. Thus, rf is primitive in k[t][x] by Proposition 4.3 

of Appendix A, so l(x, t) = g(x)h(t) - g(t)h(x)is a primitive polynomial in 

k[t][x]. By symmetry, it is also primitive ink[x][t]. But r(x) divides all of 

its coefficients, so r ∈k. Thus, 

 

 

Therefore, n > m. Since we have already proved that n   m, we get n = 

m,and so F = k(u). 

 

Check your Progress-2 

4.State the definition of regular extension & prime ideal 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

5.. State the condition for parametrization 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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10.4. LET US SUM UP 
 

We have obtain finitely generated field extensions by considering the 

quotient field of the coordinate ring of an irreducible k-variety as an 

extension of k .We finish this section with a brief discussion of the 

dimension of a variety 

 

10.5 KEYWORDS 
 

Parametrization is a mathematical process consisting of expressing the 

state of a system, process or model as a function of some independent 

quantities called parameters 

Null space - If A is your matrix, the null-space is simply put, the set of 

all vectors v such that A⋅v=0. 

 

10.6QUESTIONS FOR REVIEW 
 

1. Let V and W be k-varieties, and suppose that   : V  W is a 

morphism. Show that   induces a homorphism Tp (V)     ( ) (W). 

2. Let X       be the zero set of y
2
  - x

3
 + x. In this problem, we will 

show that the function field   (Y) is not rational over  . In order to do 

this, we need the following result: If Y is an irreducible nonsingular 

curve in      such that   (Y)/   is rational, then   [Y] is a unique 

factorization domain. Verify that   (X) is not rational over.   by 

verifying the following steps.  

(a) Show that X is an irreducible nonsingular curve. 

 (b) Let 𝔽 =   (x)    K. Show that K/ F is a degree 2 extension. If a 

is the nonidentity F -autornorphisin of K, show that σ(y) = - y. Conclude 

that σ(A)   A, where A =   [X]. 
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10.8 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide definition – 10.2.1 & 10.2.2 

2. Provide definition – 10.2.4 

3. Provide definition – 10.2.11 

4. Provide explanation and  proof – 10.3.2 

5. Provide definition – 10.3.6  
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UNIT-11: APPLICATION OF 

TRANSCENDENTAL EXTENSIONS II 

STRUCTURE 

11.0 Objectives 

11.1 Introduction 

11.2 Derivatives  

11.3 Differentials 

11.4 The tangent space of a variety 

11.5 Let us sum up 

11.6 Keywords 

11.7 Questions For Review 

11.8 Suggested Reading and References 

11.9 Answers to Check your Progress 

 

11.0 OBJECTIVES 
 

In this section, we discuss algebraic notions of derivation and 

differential, and we use these concepts to continue our study of finitely 

generated field extensions. 

11.1 INTRODUCTION 
 

We shall see that by using differentials we can determine the 

transcendence degree of a finitely generated extension and when a subset 

of a separably generated extension is a separating transcendence basis. 

As a geometric application, we use these ideas to define the tangent 

space to a point of a variety. By using tangent spaces, we are able to 

define the notion of non-singular point on a variety. This is a more subtle 

geometric concept. 
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11.2 DERIVATIONS  
 

 

Let A be a commutative ring, and let Me be an A-module. A derivation 

of A into M is a map D: A   M such that for all a, b ∈ A, 

 

D(a +b) = D(a)+ D(b), 

D(ab) = bD(a)+ aD(b). 

 

We write Der (A, M) for the set of all derivations of A into M. Since the 

sum of derivations is easily seen to be a derivation, Der(A, M) is a group. 

Furthermore, Der(A, M) is an A-module by defining aD : A   M by 

(aD)(x) = a(D(x)). 

 

Example : The simplest example of a derivation is the polynomial 

derivative map d/dx : k[x]  k[x] defined by 

 

where k is any commutative ring. The term iaiin the formula above is, of 

course, the sum of ai with itself i times. 

 

Example : If k is a field, then the derivation d/dx on k[x] can be 

extended to the quotient field k(x) by use of the quotient rule; that is, the 

formula 

 

defines a derivation on k(x). We shall see a generalization of this 

example in Lemma ahead. 

 

Example: Let k be any commutative ring, and let A = k[xi ,... ,xn] 

be the polynomial ring in n variables over k . Then the partial derivative 

snaps ∂/∂xiare each derivations of A to itself. 
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Example: Let K be a field, and let D ∈ Der (K,K). If a ∈K*, we 

prove that D(a
-1

 ) = - a
-2

 D (a) . To see this, note that D(1) = 0 by an 

application of the product rule. Thus, 

 

 

 

Solving for D (a
-1

) gives D (a
-1

 ) = - a
-2

D (a) , as desired. 

Other familiar facts from calculus can be verified for arbitrary 

derivations. For instance, if K is a field and a, b E K with b 0, and if 

D E Der (K,K), then 

 

To see this, we have 

 

from the previous calculation. This proves the validity of the quotient 

rulefor derivations on a field. 

 

Let D be a derivation of a ring A into an A-module M. An element 

a ∈A is said to be a constant for D if D (a) = 0. It is not hard to see 

that the set of all constants for D is a subring of A. If B is a subring 

of A, let DerB (A, M) be the set of all derivations D : A  M for which 

D (b) = 0 for all b ∈B. By studying DerB (A, A), we will obtain 

information about the extension A/B when A and B are fields. To 

simplify notation, let DerB (A) = DerB (A, A). We will call an element of 

DerB (A) a B-derivationon A. 

 

Let K be a field extension of F. We wish to see how the vector space 

DerF (K) gives information about the field extension K/F, and vice versa. 

We first consider algebraic extensions. The following lemma, which can 

bethought of as the chain rule for derivations, will be convenient in a 

number of places. 
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11.2.1 Lemma : Let K be a field extension of k, and let D e Derk(K). If a 

∈ K and f (x) ∈k[x], then D(f (a)) = (a)D(a), where f’ (x) is the ordinary 

polynomial derivative of f. More generally, if f (x1 ,... ,xn)∈ k[x1 ,... ,xn] 

and al,…, an∈K, then 

 

 

The second statement follows from much the same calculation. If f 

∑     
  ∙∙∙   

   , where i = (i1 , , in), applying the property D(ab) = 

bD(a)+ aD(b) repeatedly, we see that 

 

11.2.2 Proposition:  

 

Let K be a separable algebraic field extension of F. 

Then DerF (K) = 0. 

 

Proof. Suppose that D ∈ DerF (K). If a ∈K, let p(x) = min(F, a), a 

separable polynomial over F. Then 

 

0 = D(p(a)) =p' (a)D(a) 

 

by Lemma 11.2.1. Since p is separable over F, the polynomials p and p' 

are relatively prime, so p' (a) O. Therefore, D (a) = 0, so D is the zero 

derivation. 

 

11.2.3 Corollary:  Let k  F  K be fields, and suppose that K / F is a 

finite separable extension. Then each k- derivation on F extends uniquely 

to a k-derivation on K. 
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Proof. The uniqueness is a consequence of Proposition 11.2.2. If D1 and 

D2 are k-derivations of K with the same restriction to F, then D1 - D2∈ 

DerF (K), so D1 = D. We now show that any derivation D ∈ Derk (F) can 

be extended to a derivation D' on K. We can write K = F (u) for some 

u separable over F. Let p(x) = min(F, u), and say p(t) =∑ iti. We first 

define D'(u) by 

 

To define D' in general, if y ∈K, say 𝑣 = f(u) for some f(t) ∈F[tl. If 

f (t) = =∑ iti. , define D' on K by 

 

These formulas are forced upon us by the requirement that D' is an 

extensionof D. The verification that D' is indeed a well-defined 

derivation onK is straightforward but tedious and will be left to the 

reader. 

The converse of this proposition is also true, which we will verify 

shortly.To do this, we must look at inseparable extensions. 

 

11.2.4 Proposition : 

Suppose that char(F) = p >0, and let K = F(a) be purely inseparable over 

F. If K≠ F, then DerF (K) is a one-dimensional K -vector space. 

 

Proof. Define D : K  K by D(f (a)) = f' (a). We need to show that D is 

well defined. Let p(x) = min(F, a). Then p(x) = xP
m
-αfor some m∈ N 

and some a ∈F. If f (a) = g(a), then p divides f - g, so f(x) -g(x) = 

p(x)q(x) for some q. Taking derivatives, we have f' (x) -g(x) = p(x)q' (x), 

since p' (x) = 0. Therefore, f' (a) = g'(a), so D is well defined.  

 

A short calculation shows that D is an F-derivation on K. If E is any 

derivation of K, then E( f (a)) =f' (a)E(a) by Lemma 11.2.1, so E is a 

scalar multiple of D, namely E =  if   = E(a). Therefore, DerF(K) is 

spanned by D, so DerF(K) is one dimensional as a K-vector space. 
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We can now prove the converse of Proposition 11.2.2. This converse 

gives a test for separability by using derivations. 

 

11.2.5 Corollary:  If K is an algebraic extension of F with DerF(K) = 0, 

then K / F is separable. 

 

Proof. Suppose that DerF(K) = 0, and let S be the separable closure of 

F in K. If K S, then there is a proper subfield L of K containing S 

and an a ∈ K with K = L(a) and K/L purely inseparable. The previous 

proposition shows that DerL (K)≠ 0, so DerF (K) is also nonzero, since it 

contains DerL (K). This contradicts the assumption that DerF (K) = 0, so 

K is separable over F. 

 

We now consider transcendental extensions. First, we need a lemma that 

will allow us to work with polynomial rings instead of rational function 

fields. 

 

11.2.6 Lemma: Let A be an integral domain with quotient field K. Then 

any derivation on A has a unique extension to K. If D ∈ DerB (A) for 

some subring B of A, then the unique extension of D to K lies in DerF (K), 

where F is the quotient field of B. 

 

Proof. Let D ∈ Der( I). Define D' : K  K by 

 

if a,b ∈ A and b O. We first note that D' is well defined. If a/b = c/d, 

then ad = Sc, so  

   aD(d) + dD(a) = 5D(c) + cD(5).  

 

Thus, by multiplying both sides by bd and rearranging terms, we get 
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proving that D' is well defined. Checking that D' is a derivation is 

straight forward. 

 

To verify uniqueness of extensions, suppose that D is a derivation on K. 

If  ∈K, we may write a = a/b with a,b ∈ A. Then 

 

the final equality coming from above Example. This formula shows that 

D is determined by its action on A. 

 

The following proposition determines the module of derivations for a 

purely transcendental extension of finite transcendence degree. 

 

11.2.7 Proposition: Suppose that K –k (x1 ,... ,xn)is the 'rational function 

field over a field k in n variables. Then Derk (K) is an n-dimensional 

K -vector space with basis {∂ ∂xi:1 i   n}. 

 

Proof. Let f ∈ k[x1,... ,xn ]. If D∈Derk(K), then by Lemma 11.2.1, we 

have D(f) = ∑iD(xi) (∂f ∂xi ). Therefore, the n partial derivations ∂ ∂xi 

span Derk(k[x1,... ,xn]). Moreover, they are K-linearly independent; if  

 

    ∑jaj (∂ ∂xi )= 0,  

 

then 
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This proves independence, so the ∂ ∂xi form a basis for Der (k[x1,... ,xn 

]) Finally, a use of the quotient rule shows that the ∂ ∂xiforma basis for 

Derk(K). 

 

We can generalize this theorem to any finitely generated, separable 

extension. 

 

11.2.8 Theorem : Suppose that K/ k is a finitely generated, separable 

extension. Then trdeg (K/k) = dimk (Derk(K)). [f{x1 ,... ,xn} is a separating 

transcendence basis for K k and if F = k(x1 ,... ,xn), then there is a basis 

{δi : 1   i   n} for Derk(K) with δi|F = ∂ ∂xi for each i. 

 

Proof. Let {x1 ,... ,xn} be a separating transcendence basis for K/k, and 

set F = k(x1 ,... ,xn). The extension K/F is finite and separable. By 

Corollary 11.2.3 , for each i the derivation ∂ ∂xiextends uniquely to a 

derivationδi on K.  

 

We show that the Si form a basis for Der k (K). It is easy to see that the 

6i are K-linearly independent, for if ∑iaiδi = 0 with the ai∈K, then 

 

 

 

for each j. To show that the δispan Derk(K), let D be a k-derivation of 

K,and let ai = D(xi). Then D -∑iaiδi is a derivation on K that is trivial 

on F. But DerF (K) = 0 by Proposition 11.2.2, so D = ∑iaiδi 

 

 

Check your Progress-1 

1.  Explain Derivation  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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2. Discuss: Let k  F  K be fields, and suppose that K / F is a finite 

separable extension. Then each k- derivation on F extends uniquely to a 

k-derivation on K. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

11.3 DIFFERENTIALS 
 

Let B  A be commutative rings. Then the module of differentials ΩA/B 

is the A-module spanned by symbols da, one for each a∈ A, subject to 

therelations 

 

for a∈ Band a b∈ A; that is, ΩA/B is the A-module M/N, where M is the 

free A-module on the set of  symbols { da :a   } and N the sub-module 

generated by the elements 

 

 

for a∈ B and a b∈ A. The map d: A ΩA/B given by d(a) = da is a 

B-derivation on A by the definition of ΩA/B. 

 

The module of differentials is determined by the following universal 

mapping property. 

 

11.3.1 Proposition : Suppose that D : A  M is a B-derivation from 

A to an A-module M. Then there is a unique A-module homomorphism 

f : ΩA/B  M with f o d = D; that is, f(da) = D(a) for all a ∈A. In other 

words, the following diagram commutes: 
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Proof. Given D, we have an A-module homomorphism f defined on the 

free A-module on the set {da : a∈ A} into M that sends da to D(a). Since 

D is a B-derivation, f is compatible with the defining relations for 

hence, f factors through these relations to give an A-module 

homomorphism  

 

   f : ΩA/B,M with f (da) = D(a) for all a∈A.  

 

The uniqueness of f is clear from the requirement that f (da) = D (a) , 

since ΩA/B is generatedby {da : a∈ A}. 

 

11.3.2 Corollary : If B  A are commutative rings and, M is an A-

module, then DerB(A,M ≅ homA(ΩA/B,M). 

 

Proof. This is really just a restatement of the universal mapping property 

for differentials. Define φ : DerB (A, M) homA(ΩA/B,M) by letting 

φ(D) be the unique element f of homA(ΩA/B,M) that satisfies f o d = D. 

A short computation using the uniqueness part of the mapping property 

shows that φ is an A-module homomorphism.  

 

For injectivity, if φ(D) = 0,then the condition that φ(D) o d = D shows 

that D = O. Finally, for surjectivity, if f ∈ hornA (ΩA/B,M), then setting D 

= f o d yields (p(D) = f. 

 

If .M = A, then the corollary shows that DerB (A) homA(ΩA/B,A), 

the dual module to ΩA/B,. The next corollary follows immediately from 

this observation. 

 

11.3.3 Corollary: If K is a field extension of F, then 
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The following corollary is a consequence of the previous corollary 

together with Theorem 11.2.8. 

 

11.3.4 Corollary  

If {x1 ,... ,xn} is a separating transcendence basis foran extension K/ k, 

then {dx1 ,... ,dxn} is a K -basis for Ωk/k. 

 

Proof. Suppose that {x1 ,... ,xn} is a separating transcendence basis for 

K/k. By Theorem 11.2.8 , there is a basis {δ1….,δn } of Derk(K) such 

that δi extends the derivation ∂ ∂xion k(x1 ,... ,xn). By the universal 

mapping property for differentials, there are fi∈ homK (Ωk/k ,K) with 

fi(dxj) =δi(xj) for each j. 

 

 But, δi(xj) = 0 if i≠j, and δi(dxi ) = 1. Under the isomorphism Derk(K)≅ 

homK(Ωk/k, K), the δi arc sent to the f., so the fi form a basis for homK 

(Ωk/k ,K). The dual basis of Ωk/k , to the fi is then {dx1 ,…, dxn}, so this set 

is a basis for Ωk/k . 

 

The converse of this corollary is also true, and the converse gives us a 

way to determine when a set of elements form a separating 

transcendence basis. 

 

11.3.5 Proposition: Suppose that K is a separably generated extension 

of k. If x1 ,…, xn∈K such that dx1 ,...,dxn, is a K-basis for Ωk/k , then 

{x1 ,…, xn} is a separating transcendence basis for K /k. 

 

Proof. Since K/k is separably generated, ri = trdeg (K/k) by Theorem 

11.2.8  and Corollary 11.3.5. Let {y1,….,yn} be a separating 

transcendence basis for K/k. We will show that {x1 ,…, xn} is also a 

separating transcendence basis by replacing, one at a time, a y1, by an xj 

and showing that we still have a separating transcendence basis. 

 

 The element x1 is separable over k(y1,….,yn,), so there is an irreducible 

polynomial p(t) ∈k(y1,….,yn)[t] with p(x1) = 0 and pi (x1)O. We can write 

p(t) in the form 
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with each fi, gi∈ k[y1,….,yn,]. By clearing denominators and dividing out 

the greatest common divisor of the new coefficients, we obtain a 

primitive irreducible polynomial f (y1,….,yn,,t) with f (y1,….,yn,, xi) = 0 

and(∂f/∂t)(y1,….,yn,, xi) ≠ 0. Let P =(y1,….,yn,, xi). Taking differentials 

and using the chain rule yields 

 

The differential dx1≠0, so some (∂f/∂yi)(P)≠0. By relabeling 

if necessary, we may assume that (∂f/∂y1)(P)≠0. The equation 

(y1,….,yn,, x1) = 0 shows that y1 is algebraic over k (x1, y2….,yn). 

 

 Moreover, the condition (∂f/∂y1)(P)≠0 implies that y1 is separable over 

k(x1, y2….,yn)- Thus, each yi is separable over k(x1, y2….,yn) and since 

K is separable over k(x1, y2….,yn), by transitivity the set {x1, y2….,yn} 

is a separating transcendence basis for K/k. 

 

Now, assume that for some i   1, {x1,….xiyi+1….,yn} is a separating 

transcendence basis for K/k. Repeating the argument above for xi+1 in 

place of x1 , there is an irreducible primitive polynomial equation g (Q) = 

0with (∂g/∂tn+1)(Q)≠ 0, if Q =(x1,….xiyi+1….,ynx1+1). this yields 

an equation 

 

 

 

The differentials dx1,….,dxnare K-independent, so some (∂g/∂yj)(Q) 

≠ 0. Relabeling if necessary, we may assume that (∂g/∂yi+1)(Q)≠ 0.  
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Consequently,yi+1 is separable over k(x1,….x1+1yi+2….,yn). As above, this 

means that {x1,….x1+1yi+2….,yn} is a separating transcendence basis 

for K/k. Continuing this procedure shows that {x1,….xn} is a separating 

transcendence basis for K/k. 

 

Example : Let k o be a field of characteristic p, let K = k0(x,y) be 

the rational function field in two variables over ok0 , and let k = k0 (xP, 

yP).Then {x, y} is algebraically dependent over k; in fact, K/k is 

algebraic.  

 

However, dx and dy are K-independent in Ωk/kj; to see this, suppose that 

adx+bdy = 0 for some a, b ∈ K. The k0 -derivations ∂/∂x and ∂/∂yare 

actually k-derivations by the choice of k. By the universal mapping 

property for differentials, there are f, g ∈ homK (ΩK/F;,K) with f o d =∂/∂x 

and g o d= ∂/∂y. Then f (adx+ bdy) = a f (dx)+ b f (dy) = a and 

g(adx + bdy) = b. Thus, a = b = 0, so dx and dy are K-independent.  

 

This shows that Proposition 11.3.5  is false if K/k is not separably 

generated. 

 

11.4 THE TANGENT SPACE OF A 

VARIETY 
 

Let f(x, y) be a polynomial in ℝ[x, y]. The equation f (x , y) = 0 defines y 

implicitly as a function of x. If P = (a, b) is a point on the carve f = 0, 

then, as long as the tangent line to the curve at P is not vertical, we have 

 

 

 

This formula is valid even if the tangent line at P is vertical. To deal with 
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vector subspaces, we define the tangent space to the curve f = 0 at P to 

be the set of solutions to the equation 

 

 

 

This tangent space is a vector subspace of ℝ2
 . 

 

The curve f = 0 is nothing more than the set of ℝ-rational points of the 

R-variety Z(f). We can give a meaningful definition of the tangent space 

to any k-variety, for any field k, by mimicking the case of real plane 

curves. Let V be a k-variety in C
n
, where, as usual, C is an algebraically 

closed extension of k, and let P ∈ V. For f ∈ k[x1,...,xn], let 

 

 

 

The linear polynomial dp f is called the differential of f at P. 

 

11.4.1 Definition : If V is a k-variety, then the tangent space TP(V) to V 

at P is the zero set Z ({dP f : f ∈ I(V)}). 

 

Example :  By the Hilbert basis theorem, any ideal of k[x1,...,xn] 

can be generated by a finite number of polynomials. Suppose that 

I(V) is generated by {fl,…., fr}. Then we show that TP(V) = 

Z({dpfl,...,dpfr}. If h = ∑ gi fi , then by the product rule, 

 

This shows that dPh is a linear combination of the dPfifor any h ∈ I(V). 

 

Example :  If V = Z(y -x
2
) and P = (a, a

2
), then Tp(V) = Z(y + 2ax). If P 

= (0,0) is the origin, then TP(V) is the x-axis. 
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Example : Let V = Z(y
2
-x

3
). If P = (0,0), then dp f = 0 for all 

f ∈ I(V). Consequently, TP(V)= C
2
. 

 

 

 

Example : Let V = Z(x
2
+ y

2
+ z

2
 - 1), and assume that char(k)≠ 2. 

If P = (a, b, c) and! x
2
+y

2
 + z

2
1, then dp f = 2ax + 2by 2cz , 

so Tp(V) = Z(ax + by + cz). Since (a, b, c)≠(0, 0, 0) for all P ∈ V, the 

tangent space Tp(V) is a 2-dimensional vector space over C. 

 

One of the uses of the tangent space is to define non singularity. To keep 

things as simple as possible, we first consider hypersurfaces; that is, 

varieties of the form Z(f) for a single polynomial f. 

11.4.2 Definition : Let V = Z(f) be a k-hypersurface. A point P ∈ V is 

non-singular, provided that at least one of the partial derivatives ∂f /∂xi 

does not vanish at P; that is, P is non-singular, provided that dp f ≠0. 

Otherwise, P is said to be singular. If every point on V is non-singular, 

then V is said to be non-singular. 

 

We can interpret this definition in other ways. The tangent space of V = 

Z(f) at P is the zero set of dp f = ∑i (∂f /∂xi)(P)xi , so Tp(V) is the zero 
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set of a single linear polynomial. If f ∈ k[x1,...,xn], then Tp(V) is either 

an (n- 1)-dimensional vector space or is all of C
n
, depending on whether 

dp f ≠0 or not. But, the point P ∈ V is nonsingular if and only if dp f ≠0,so 

P is non singular if and only if dimk(Tp(V)) = dim(V) = n – 1, the latter 

equality from  above Example, and P is singular if dimk(Tp(V)) > 

dim(V). 

 

Example : The parabola Z(y -x
2
) is a nonsingular curve, whereas 

Z(y
2
-x

3
) has a singularity at the origin. Every other point of Z(y

2
-x

3
 ) 

is nonsingular by an easy calculation. The sphere Z(x
2
+ y

2
+ z

2
 - 1) is 

also a nonsingular variety, provided that char(k)≠ 2. 

 

For one application of the notion of nonsingularity, we point to Problem 

6, which outlines a proof that the function field of the  -variety Z(y
2
–(x

3
 

- x)) is not rational over  . 

 

We now look into nonsingularity for an arbitrary variety. Suppose that 

V is a k-variety, and let fi,….,fm, be polynomials that generate the ideal 

I (V). Let P ∈ V, and consider the Jacobian matrix 

 

One interpretation of the definition of a nonsingular point on a 

hypersurfaceis that a point P ∈Z( f) is nonsingular if rank(J(f))= 1, and 

P is singular if rank(J(f)) = 0. In other words, P is nonsingular if the 

rank of J(f) is equal to n - dim(V). 

 

11.4.3 Definition: Suppose that V is an irreducible k-variety in Cn, and 

let fi,…..,fmbe generators of I(V). If P ∈ V, then P is nonsingular if the 

rank of J(fi,…..,fm) is equal to n -dim(V). 

 

The following proposition shows that n - dim(V) is an upper bound for 

the rank of the Jacobian matrix. Thus, a point is nonsingular, provided 
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that the Jacobian matrix has maximal rank. We will call an irreducible 

k-variety V absolutely irreducible if the ideal I(V) is an absolutely prime 

ideal of k[x1 ,..., xn]. 

 

11.4.4 Proposition :  Suppose that V is an absolutely irreducible k-

variety in Cn . Let P ∈ V, and let fi,…..,fm be generators of the ideal I(V). 

Then rank(J(fi,…..,fm))   n -dim(V). 

 

Proof. We will prove this in a number of steps. Let K be the function 

field of V. The assumption that V is absolutely irreducible means that K/ 

k is a regular extension, by Theorem 22.10. Therefore, K/k is separably 

generated, so  

 

  trdeg (K/k) = dim(Derk(K)), and so dim(V) = dim(Derk(K)). 

 

The coordinate ring of V is k[V] = k[x1,…,xn]/I (V) = k[s1,... ,sn], 

where si = xi + I( V). Thus, K = k(s1,... ,sn). Let Q = (s1,... ,sn) ∈K
n
 . 

We first point out that 

 

 

 

For f ∈ I(V), let dQ f = ∑   
 
   }(∂f /∂xi)(Q). We view dQ f as a linear 

functional on K
n
; that is, we view dQ f as a linear transformation from K

n
 

to K defined by 

 

Let M be the subspace of homK (K
n
 K) spanned by the dQ f as f ranges 

over I(V). Now that we have given an interpretation of the differentials 

dQ f as linear functionals, we interpret derivations as elements of I('. For 

D ∈ Derk (K), we obtain an n-tuple (D(s1),... ,D(sn)). A k-derivation 

on K is determined by its action on the generators s1,... ,snof K/k. 

 

Therefore, the map D  (D(s1),... ,D(sn)) is a K-vector space injection 
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from Derk(K) to K
n
 . We denote by D the image of this transformation. 

Next, we verify that an n-tuple (α1,….,αn) lies in D if and only if 

dQ f (α1,….,αn) = 0. One direction of this is easy. By the chain rule, we 

see that 

 

 

if f ∈I(V). For the other direction, suppose that dQ f (α1,….,αn) = 0. 

We define a derivation D on K with D(si) = αi as follows. First, let D' 

bethe derivation D' : k[x1,…,xn]  K defined by D' =∑i⍺i(∂f /∂xi)(Q); 

that is, D'(f) = ∑i⍺i(∂f /∂xi)(Q);.  

 

The condition on the ⍺I shows that D'(f) = 0 if f ∈I(V), so D' induces a 

k- derivation D : k[V] K defined by D(g + I(V)) = D'(g). The quotient 

rule for derivations shows that D extends uniquely to a derivation on K, 

which we also call D. The definition of D' gives us D(si) = ⍺i, so (⍺i ,... , 

⍺n) ∈D as desired. Now that we have verified our claim, we use linear 

algebra. The subspace D of K
n
is the set 

 

 

 

we get dim(D) = n- dim(V). 

 

The final step is to verify that dim(D) = rank(J'), where J' is the matrix 

((∂fi/∂xj)(Q)), and that rank(J')   rank(J), if J is the Jacobian matrix 

((∂fi/∂xj)(P)). This will show that 
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our desired result. The first of these claims is easy. The space D is 

spanned by the dQ fi , since the fi generate the ideal I (V).  

 

The i
th

 row of J' is the matrix representation of the linear transformation 

dQ fi,so the rank of J' is the dimension of the space spanned by the dQ fi ; 

in other words, rank(J) =dim(D). For the inequality rank(J')   rank(J), let 

P = (a1,...,an) ∈V. 

 

There is a homomorphism φ : k[x1,...,xn]  C with φ(xi) = ai . Since P 

∈V, we have f (P) = 0 for all f ∈(V), so 1(V) C ker(φ). We get an induced 

map  ̅: k[V]  C that sends si to ai. Under this map ((∂fi/∂xj)(Q))is sent 

to (∂fi/∂xj)(Q). If rank(J') r, then the rows of J' are linear combinations of 

some r rows of J'.  

 

Viewing  ̅as a map on matrices, since ̅(J') = J the rows of J are linear 

combinations of the corresponding r rows of J. Thus, the rank of J is at 

most r, so rank(J')   rank(J). This finishes the proof.  

As a consequence of the proof of this proposition, we obtain a relation 

between the dimension of the tangent space TP(V) and of V. 

 

11.4.5 Corollary : Let V be an absolutely irreducible k- variety, and let 

P ∈V. Then dim(TP(V))   dim(V), and dim(TP(V)) = dim(V) if and only 

if P is nonsingular. 

 

Proof. The tangent space TP(V) is the set 

 

Using the notation of the proof of the previous proposition, the map 

induces a map on differentials that sends dQ f to dPf. If N = 

{dP f : f ∈I(V)}, viewed as a subspace of homC (C
n
, C), then by linear 

algebra, we have dim(N) + dim(TP(V)) = n However,  ̅ sends M to N, so 

dim(M)  dim(N); hence, 
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Moreover, dim(TP (V)) = rank(J) by the same argument that shows 

dim(D) = rank(J'). Therefore, we get equality above exactly when 

rank(J') = rank(J) or when rank(J) = n - dim(V). However, this is true 

if and only if P is nonsingular, by the definition of nonsingularity.  

 

Let k be a field, and let C be an algebraically closed extension of k. In 

One of the above Example, we showed how one can obtain an 

irreducible k-variety from a finitely generated field extension of k. This 

map is not the inverse of the map that associates to each irreducible k-

variety V the function field k (V). 

 

In that example, we saw that the nonsingular curve y = x
2
 has the same 

function field as the singular curve y = x
3
 . However, nonsingularity is 

not the only problem. We have only talked about affine varieties; that is, 

varieties inside the affine space C
m
. In algebraic geometry, one usually 

works with projective varieties. It is proved in many algebraic geometry 

books that there is a 1-1 correspondence between finitely generated 

regular extensions of k of transcendence degree 1 and nonsingular 

projective curves.  

 

Moreover,if we work over   then there is also a 1-1 correspondence 

between finitely generated extensions of   of transcendence degree 1 and 

Riemann surfaces. The interested reader can find the correspondence 

between non-singular projective curves and extensions of transcendence 

degree 1. 

 

Check your Progress-2 

3. What do you understand by Differentials  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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4. Explain the concept of tangent space of a variety 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

5. Define Non- singular 

__________________________________________________________

__________________________________________________________

______________________________________________________ 

11.5 LET US SUM UP 
 

We have seen the concept of derivatives and differential and  their 

geometric application that can be used  to define the tangent space to a 

point of a variety. By using tangent spaces, we are able to define the 

notion of non-singular point on a variety 

 

11.6  KEYWORDS 
 

Quotient Rule  : A Quotient Rule is stated as the ratio of the quantity of 

the denominator times the derivative of the numerator function minus the 

numerator times the derivative of the denominator function to the square 

of the denominator function. 

 

Computation : To compute is to calculate, either literally or 

figuratively. 

 

11.7 QUESTIONS FOR REVIEW 
 

1. Let K be a separable extension of F that is not necessarily algebraic. 

Show that any derivation on F extends to a derivation on K. 

2. If K is a finite separable extension of F, show that there is a K-vector 

space isomorphism Derk (F)    K ≅ Der k (K). 
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PROGRESS 
 

1. Provide explanation – 11.2 

2. Provide proof – 11.2.3 

3. Provide explanation –11.3 

4. Provide explanation – 11.4 

5. Provide explanation and definition – 11.4.2  
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UNIT-12 DISCRIMINANTS AND 

TRANSCENDENCE OF Π AND E 
 

STRUCTURE 

12.0 Objectives 

12.1 Introduction 

12.2 Discriminants  

12.3 The discriminant of bilinear form 

12.4 The Transcendence of π and e  

12.5 Let us sum up 

12.6 Keywords 

12.7 Questions 𝔽or Review 

12.8 Suggested Reading and Re𝔽erences 

12.9 Answers to Check your Progress 

 

12.0 OBJECTIVES 
 

Understand the concept of Discriminants and its bilinear form 

Comprehend the The Transcendence of π and e 

12.1 INTRODUCTION 
 

In this section, we define discriminants and give methods to calculate 

them. The two best known and most important non rational real numbers 

are  and e. In this section, we will show that both of these numbers are 

transcendental over   

12.2 DISCRIMINANTS 
 

The discriminant of a polynomial is a generalization to arbitrary degree 

polynomials of the discriminant of a quadratic. If K = F(a) is a Galois 

extension of a field F, and if f = min(F, a), then the Galois group 
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Gal(K/F) can be viewed as a subgroup of the group of permutations of 

the roots of f.  

 

The discriminant determines when this subgroup consists solely of even 

permutations. We will use this information to describe the splitting field 

of a polynomial of degree 4 or less. First, there are some are interesting 

relations L that make calculation discriminants manageable, and there are 

notions of discriminants in a number of other places, such as algebraic 

number theory, quadratic form theory, and noncommutative ring theory. 

While the different notions of discriminant may seem unrelated, this is 

not the case, as we point out in the following discussion. 

 

The discriminant of a polynomial and an element 

 

The type of discriminant we need in Section 13 is the discriminant of a 

polynomial. To motivate the definition, consider a quadratic polynomial f 

(x) x 2 + bx + c whose discriminant is b
2
 - 4c. 

The roots of f are =     
 

 
(–     √      ) and     

 

 
(–    

 √      ) Therefore √       =       , so         (   

   ) This indicates a way to generalize the notion of the discriminant of 

a quadratic to higher degree polynomials. 

12.2.1 Definition: Let F be a field with char(F)   , and let f (x)  F[x]. 

Let   ,…,  be the roots of f in some splitting field K of f over F, and let 

    ∏   (      )    Then the discriminant disc(f) of f is the element 

D =     ∏
   

.(      )/
 

 

12.2.2 Definition : If K is an algebraic extension of F with char(F)   2 

and   K, then the discriminant disc( ) is disc (min(F,  )). 

The discriminant disc( ) defined above is dependent on the base field F. 

Also, the element   is dependent on the labeling of the roots of f, in that 

a different labeling can change   by -1. However, the discriminant does 

not depend on this labeling. Note that if f(x)  F[x], then D = disc( f) = 
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0 if and only if f has a repeated root. The discriminant thus will give us 

information only when f has no repeated roots. It is in this case that we 

concentrate our investigation. The discriminant D clearly is an element 

of K. We can say more than that. If K is the splitting field of a separable, 

irreducible polynomial f  F[x] of degree n over F, then we view 

Gal(K/F) as a subgroup of S„ by viewing the elements of Gal(K/F) as 

permutations of the roots of f. 

12.2.3 Lemma: Let F be a field with char(F)   2, let f (x)  F[xl be 

an irreducible, separable polynomial, and let K be the splitting field 

of f (x) over F. If  is defined as in Definition 10.2.2, then a   

Gal(K/F) is an even permutation if and only if  ( ) =  , and   is odd 

if and only if  ( ) =  ,. Furthermore, disc(f)  F. 

 

Proof: Before we prove this, we note that the proof we give is the same 

as the typical proof that every permutation of Snis either even or odd. In 

fact, the proof of this result about Snis really about discriminants. It is 

easy to see that each     = Gal(K/F) fixes disc(f), so disc(f)  F. For 

the proof of the first statement, if n = deg(f), let M = F(x1 ,...,xn„). We 

know  that Sn acts as field automorphisms on M by permuting the 

variables. Let ∏   (      )Suppose that     Sn is a transposition, say 

 = (ij) with i <j. Then a affects only those factors of h that involve i or j. 

We break up these factors into four groups: 

       

              for      

              for      

              for       

 

For      the permutation   (  ) maps        to         and vice 

versa and   maps        and vice versa for     if  <   , then 

  (      )            (      ) 

And 
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  (      )            (      ) 

Finally 

  (      )            (      ) 

Multiplying all the terms together gives  (h) =    . Thus, we see for an 

arbitrary      that  (h) = h if and only if  is a product of an even 

number of permutations, and  (h) =   h if and only if  is a product of 

an odd number of permutations. By substituting the roots   of f for the    

we obtain the desired conclusion. 

Recall that the set   of all even permutations in   is a subgroup; it is 

called the alternating group. 

12.2.4 Corollary: Let F, K, and f be as in Lemma 10.2.3, and let G = 

Gal(K/F). Then G  Anif and only if disc(f)  F2 . Under the 

correspondence of the fundamental theorem, the field F( )  K 

corresponds to the subgroup G  An„ of G. 

Proof. This follows from the lemma, since G  An, if and only if each 

  G is even, and this occurs if and only if  ( ) =  . Therefore, G   An 

if and only if disc(f)   F
2
. 

One problem with the definition of a discriminant is that in order to 

calculate it we need the roots of the polynomial. We will give other 

descriptions of the discriminant that do not require knowledge of the 

roots and lend themselves to calculation. We first obtain a description of 

the discriminant in terms of determinants. 

Let K be a field and let   …     Then the Vandermonde matrix 

V(  …  )is the       matrix 

 

  (      )  

[
 
 
  
 
 
 

  

  

 
  

  
 

  
 

 
  

 

 
 
 

 

  
   

  
   

 
  

   ]
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12.2.5 Lemma:If K is a field and a , an E K, then the determinant of the 

Vandermonde matrix V(      ) is ∏   ((      )).Consequently, if 

f   F[x] has roots          K in some extension K of F, then the - 

discriminant of f is equal to (det (  (      ))  

Proof: Let A = V (      )That det(A) = ∏   ((      )) is a 

moderately standard fact from linear algebra. For those Who have not 

seen this, we give a proof. Note that if        with I    j, then det(A) = 

0, since two rows of A are the same, so the determinant formula is true in 

thiscase. We therefore assume that the    are distinct, and we prove the 

result using induction on n.  

 

If n = 1, this is clear, so suppose that n >1. Let h(x) = det 

(V(             )). Then h(x) is a polynomial of degree less than n. 

By expanding the determinant about the last row, we see that the leading 

coefficient of h is det(V(            ))Moreover, h(  ) =  

det(V(              ) so h (  ) ) = 0 if 1 <i<n — 1. Therefore, h(x) is 

divisible by each x -   . Since deg(h) <n and h has     distinct factors, 

h(x) =  c (     )        (       )where c = det(V(           )). By 

evaluating h at an and using induction, we get. 

 

  (  ) = det          )) 

  
∏

        
 (      )

∏
   

 (      ) 

∏
   

 (      ) 

 

This finishes the proof that det (V (         ))   ∏   (      ) The 

last statement of the lemma is an immediate consequence of this formula 

and the definition of discriminant. 

The discriminant of a polynomial can be determined by the coefficients 

without having to find the roots, as we proceed to show. This is à 

convenient fact to describe polynomials of degree 3 and 4. Let A = 

V(      ). Then det(A)2 = det(A
t
 A). Moreover, 
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    [

 
  

 
  

   

 
  

 
  

   

 
 
 
 

 
  

 
  

   

]    

[
 
 
  
 
 
 

  

  

 
  

  
 

  
 

 
  

 

 
 
 
 

  
   

  
   

 
  

   ]
 
 
 
 

  [

  

  

 
    

  

  

 
  

 
 
 
 

    

  

 
     

] 

where         
 . for i  1, and   = n. Therefore, det (A)2is the 

determinant of this latter matrix. This is helpful because if the roots of 

f(x) are   ,    , then there are recursive relations between the    and the 

coefficients of f and so the determinant of the   can be found in terms of 

the coefficients of f. These relations are called Newton's identities. Note 

that          (  
 )if K is the splitting field of min(F,   ) 

12.2.6 Proportion (Newton’s Identities):  Let  ( )           

                 be a monic polynomial over F with roots     . . . 

   If         
   then 

                                    for       

                          for     

 

Proof: An alternative way of stating Newton’s identities is to use the 

elementary symmetric functions    in the    instead of the    Since 

    (  )      Newton’s identities can also be written as 

                      (   )          for       

                          for     

 

The proof we give here is from Mead [21]. The key is arranging the 

terms in the identities in a useful manner. We start with a bit of notation. 

If (          ) is a sequence of non increasing, non-negative integers, 

let 

 (          )  ∑   ( )
     ( )
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Where the sum is over all permutations   of { 1, 2, … ,  } that give 

distinct terms Then      (       ) (  ones) and      ( ) To simplify the 

notation a little, the sequence of  once will be denoted (  )  and the 

sequence (       ) of length     will be denoted (    ) It is then 

straight forward to see that 

 (   ) ( )    ( )    (     )  

 (   ) (   )    (     )    (     )  

 (   ) (     )    (       )    (         )  

And in general 

 (   )  (  )    (        )   (      ) for       min {     +. (12.1) 

Moreover, if      and       then  

 ( ) (    )    (      )      (  ) 

If        then 

 (   ) (  )    (          ) 

Newton’s identities then follow from these equations by multiplying the 

 th equation in (12.1) by (  )    and summing over   

Newton’s identities together with Lemma 12.5 give us a manageable way 

of calculating discriminates of polynomials. As an illustration, we 

determine the discrimination of a quadratic and a cubic. The calculation 

of the discriminant of a cubic will come up in Section 13 

 

Example:  Let  ( )             then      Also, Newton’s 

identities yield           so        , so        for      we have 

             , so                     therefore, 

Disc ( )   |
    

          
|    (      )               

the usual discriminant of a monic quadratic 

 

Example : Let,   ( )            then           and      

so by Newton’s identities we get 
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Therefore 

disc ( )   |

     
       

         
|               

 

For an arbitrary monic cubic, we could do a similar calculation.   For, if 

 ( )                  let         By Taylor expansion, we 

have 

 ( )

   (  )    (  ) (    ⁄ )   
   (  ⁄ )

  
(     ⁄ )   

    (  )⁄

  
(    )⁄  

⁄⁄  

The choice of   was made to satisfy    (  )   ⁄ If     (  ⁄ ) and 

   (  ⁄ ), then  ( )            If the roots of   and        , 

        and        . Therefore, the definition of discriminant 

shows that disc  ( )        (       ) The interested reader can 

check that disc  ( )     (       )                    

We give a further description of the discriminant, this time in term of 

norms  

 

12.2.7 Preposition:  Let L = F( ) be a field extension of F If  ( )  

   (   )             (  ) (   )      (  ( ))  Where 

  ( )                  𝑣   𝑣       

Proof. Let K be a splitting filed for   over F, and write  ( )  

(     )  (     )    , - Set       then a short calculation shows 
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that   (  )   ∏        
  (      ) If   , …,   are the F homomorphisms 

of L to K that satisfy   ( )      then by Proportion 8.12 

   ⁄ (  ( ))   ∏   (  ( ))   ∏  (  )

  

 

Using the formula above for   (  ) we see by checking signs carefully 

that 

   ⁄ (  ( ))   ∏   (  )  ∏ ∏(      )

 

   
    

 

 (  )
 (   )

 

 

    ( ) 

Example : Let   be an odd prime, and let 𝜔 be a primitive pth  root of 

unity in  . We use the previous result to determine disc (𝜔) Let K= 

 (𝜔), the pth cyclotomic extension of   If  ( )     (  𝜔)  then 

 ( )              (    )     ) We need to calculate 

   ⁄ (  (𝜔)) 

First, 

  ( )   
     (   )   (     )

(   ) 
  

So   (𝜔)    𝜔    (𝜔   ). We claim that    ⁄ (𝜔)    and 

   ⁄ (𝜔   )    To prove that first equality, by the description of Gal 

(K/ ) given in corollary 7, 8, we have 

   ⁄ (𝜔)   ∏ 𝜔   𝜔 (   )    

   

   

 

Since   is odd. For the second equality, note that 

             ∏(   𝜔 )

   

   

 

Since   = ∏ (   𝜔 )   
    However, 

   ⁄ (𝜔   )   ∏(𝜔    )

   

   

 

So    ⁄ (𝜔   )   , Where again we use   odd. From this, we see that 

   ⁄  (  (𝜔)) =    ⁄ .
     

   
/   

   ⁄ ( )   ⁄ ( )   

   ⁄ (   )
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The discriminant of an   tuple and of a field extension  

We now define the discriminant of a field extension of degree   and ofan 

 -tuple in the field extension. We shall see that our definition of the 

discriminant of an element is a special case of this new definition. Let K 

be a separable extension of F with [K : F] = n. As we know that [K : F] 

is equal to the number of F-homomorphisms from K into an algebraic 

closure of F. 

12.2.8 Definition: Let K be a separable extension of F of degree n, and 

let   ,     . . .,    be the distinct F-homomorphisms from K to an 

algebraic closure of F.  

If    ,     …,   are any n elements of K, then the discriminant of the 

  tuple (  , . . .,   ) is disc (    …,   ) = det(σ (  )) If    …,    is 

any F basis of K, then the discriminant of the field extension K/F is 

disc (K/F) = disc (  , …,   ). 

    

The definition of disc(K/F) depends on the choice of basis. We will show 

just how it depends on the basis. But first, we give another description of 

the discriminant of an n-tuple, which will show us that this discriminant 

is an element of the base field F. 

 

12.2.9 Lemma :  Let K be a separable field extension of F of degree 

 , and let   , . . .,      Then disc (  , . . .,   ) = det (      (    )) 

Consequently, disc (  , . . .,   )    

Proof. Let     . . .,   be the distinct F homomorphisms from K to an 

algebraic closure of F. If A =   (  )), then the discriminant of the   

tuple   , . . .,    is the determinant of the matrix     whose    entry is 

∑   (  )  (  )   ∑   (    )
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       (    ) 

Therefore, disc (  , . . .,   ) = det (      (    )) 

The next result shows that the discriminant can be used to test whether 

or not an   tuple in K forms a basis for K 

 

12.2.10 Proposition: Let K be a separable field extension of F of 

degree    and let   , . . .,      . Then disc (  , . . .,   )   if and 

only if   , . . .,    and linearly dependant over F. Thus *  , . . .,   } is 

an F – basis for K if and only if disc  (  , . . .,   )    

Proof . Suppose that the                          over F. Then one 

of the    is an F – linear combination of the others If     ∑          

with      F , then 

     (    )   ∑         (    

 

) 

Therefore, the columns of the matrix (      (    )) are linearly 

dependant over F, so det (      (    ))    

 

Conversely, Suppose that det (      (    ))    then the rows 

        of the matrix (      (    ) are dependent over F, so there are 

       not all zero, with ∑         The vector equation ∑       

  means that ∑    (      (    ))    for each   Let    ∑       By 

linearity of the trace, we see that      (   )    for each  . If the    

are independent over F, then they form a basis for K.  

 

Consequently, linearity of the trace then implies that      (  )    

for all     . This means that the trace map is identically zero, which 

is false by the Dedekind independence lemma. Thus, the    are 

dependent over F 
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We now see exactly how the discriminant of a field extension depends 

on the basis chosen to calculate it. 

 

12.2.11 : Let *  , . . .,   } and *  , . . .,   } be two F bases for K. Let 

A = (   ) be the      transition matrix between the two bases; that 

is,     ∑        Then disc (  , . . .,   ) = det ( )  disc (  , . . .,   ) 

consequently the coset of disc (K/F) in   /    is well defined 

independent of the basis chosen 

Proof since     ∑       , we have   (  ) In terms of matrices says 

that 

.  (  )/   (   )
 

.  (  )/     .  (  )/ 

Therefore, by taking determinants, we obtain 

Disc (  , . . .,   )     ( )       (  , . . .,   ). 

The final statement of the proposition follows immediately from this 

relation together with the fact that the discriminant of a basis is non 

zero, by Preposition 12.13 

To make the definition of discriminant of a field extension well 

defined, one can define it to be the coset in   /    represented by disc 

(  , . . .,   ) for any basis *  , . . .,   }of K. This eliminates 

ambiguity although it is not always the most convenient way to work 

with discriminants. 

 

Example : In this example, we show that the discriminant of a 

polynomial is equal to the discriminant of an appropriate field 

extension. Suppose that K =   ( ) is an extension of F of degree  . 

Then 1,       ….,      is a basis for K. We calculate disc (K/F) 

relative to this basis. We have disc (K/F) = det (  (    ))  

consequently, if       ( )  then 
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disc (K/F) = det (

 
 
 
 

  ( )

  ( )
 

  ( )

 
 
 
 

  (    )

  (    )
 

  (    )

)

 

 

= det ( (          ))
 
 

Therefore, disc (K/F) = disc ( )       (min(F,  )) 

Example: Let K = (  ( )  )   det .
  
    

/
 

  (   )      

More generally, if K =  (√ ) with   a square free integer, then using 

1, √  as a basis, we see that the discriminant is    

 

12.3 THE DISCRIMINANT OF BILINEAR 

FORM 
 

We now extend the idea of discriminant to its most general form that 

we consider. The two previous notions of discriminant will be special 

cases of this general form. If V is an F – vector space, a bilinear form 

an V is a mapping B : V       that is linear each variable. In other 

words, for all   𝑣      and all           we have 

 

  (   𝑣    𝜔)     (  𝑣)      (   )  

  (    𝑣 𝜔)     (   )      (   )  

 

12.3.1 Definition : If V is an F vector space and if B : V   V  F is 

bilinear form then the discriminant of B relative to a basis V = *  , . . 

.,   } of V is disc (B)v = det (B(𝑣  𝑣 )) 

As with the discriminant of a field extension, this definition depends 

on the choice of basis. If W = *  , . . .,   } is another basis, let A be 

the matrix describing the basis change, that is, if A = (   ), then 

    ∑    𝑣   
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By the bilinearity of B, we have 

B (     )    (∑    𝑣 ∑    𝑣   )   ∑      (𝑣  𝑣 )       

Therefore, if follows that (B (     )     ( (𝑣 𝑣 ))  Taking 

determinants gives 

Disc ( )     ( )       ( )   

The same relation that was found for field extension 

 

A bilinear form is non degenerate if B (𝑣  )         all   only if 

𝑣     if B (v, w) = 0 for all 𝑣 only if     As in Section 11, if we 

define         by   (𝜔)     (𝑣  ) then the map 𝑣      is a 

homomorphism from V to      (   ) The form B is nondegenerate 

if and only if this homomorphism is injective. If we represent this 

homomorphism by a matrix, using the basis V and the dual basis for 

    (   )  then this matrix is (B (𝑣 𝑣 )). Therefore B is non 

degenerate if and only if disc ( )     This condition is independent 

of the basis, by the change of basis formula above for the discriminant 

 

Example: We now show that the discriminant of a field extension is 

the discriminant of the trace form. Let K be a finite separable 

extension of F Let B :         be defined by B (   )  

     ( b) Then B is a bilinear form because the trace is linear. The 

discriminant of B relative to a basis V = {  , . . .,   + is det 

(     (𝑣 𝑣 )). But, by Lemma 12.12 this is the discriminant of K/F 

Therefore, the previous notion of discriminant are special cases of the 

notion of discriminant of a bilinear form. 

Check your Progress-1 

1. Explain The concept of Discriminant  
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__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. State and prove Newton’s Identities 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

12.4 THE TRANSCENDENCE OF Π AND E 
 

12.4.1 Theorem: (Lindemann – Weierstrauss)   Let         be distinct 

algebraic number. Then the exponentials           are linearly 

independent over   

 

12.4.2 Corollary : The numbers   and   are transcendental over   

 

Proof: of the corollary: Suppose that   is algebraic over   Then there are 

rational    with ∑    
    

    This mean that the numbers   ,   , …, 

     are linearly dependant over   By closing        and      

  this dependence is false by the theorem. Thus   is transcendental over 

  for   we note that if   is algebraic over   then so, is   ; hence 

       are linearly independent over    which is false since         

thus,   is transcendental over   

 

Proof of the Theorem: Suppose that there are        with 

∑        

 

   

 

By multiplying by a suitable integer, we may assume that each       , 

moreover , by eliminating terms if necessary, we may also assume that 

each       Let K be the normal closure of  (       ) Then   is a 

Galois extension of   suppose that Gal (K/  )  *       } Since 

∑         
     we have 
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   ∏ (∑      (  )

 

   

)

 

   

  ∑      

 

   

 

 

Where      , and then    can be chosen to be distinct elements of K by 

gathering together terms with the same exponent. Moreover, some 

      (See problem 4); without loss of generality say       If     

Gal (K/ ) then the   terms ∑       (  ) 
     for         are the 

terms ∑      (  ) 
     in some order, so the product is unchanged when 

replacing   (  ) by    (  ) since both   is a sum of terms of the form 

  (  ) the exponents in the expansion of ∏ (∑       (  ) 
   ) 

    are the 

various   (  ) thus we obtain equations 

 

   ∑      (  )

 

   

 

 

For each   Multiplying the  th equation by    (  ), we get 

 
 

         ∑      (  ) 
                             (1) 

 

Where            Note that       since the    are all 

distinct. Each      ; hence    is algebraic over   thus, for a fixed  , the 

elements   (  ) are roots of a polynomial   ( )     , - where the 

leading coefficient     ( )can be taken to be a positive integer. 

Moreover we may assume that   ( )    by using an appropriate 

multiple of min ( ,   ) for   ( ) 

 We now make estimates of some complex integrals. If  ( ) is a 

polynomials, let 

 

 ( )   ∑  ( )( )
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Where  ( )( ) is the  th derivative of  . This sum is finite since   is a 

polynomial, so F is also a polynomial. Note that  ( )     ( )    ( ), 

so 

 

  
 (    ( )        ( ) 

Therefore 

∫      ( )             ( )
 

 

 

Or 

 ( )       ( )      ∫      ( )  
 

 

 

 

By setting       (  ), multiplying by    and summing over   and   we 

get 

 

∑ ∑     (  (  ))     ( )

 

   

 

   

∑ ∑      (  )

 

   

 

   

 

    ∑ ∑      (  )

 

   

 

   

∫     ( )  
  (  )

 

 

Using Equation (1) and rearranging the second sum gives us an equation  

 

     ( )   ∑   ∑    

 

   

 

   

.  (  )/ 

    ∑ ∑      (  ) 
   

 
   ∫     ( )  

  (  )

 
                    (2) 

 

We define   by 

 ( )   
(      )   

(   ) 
    (∏   ( )

 

   

)

 

 

 

Where   is a prime yet to be specified. Recall that    is the leading 

coefficient of   ( ) and that each    is a positive integer. From this 

definition, we see that 

   ( )     ( )      (   )( ) 
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While  (   )( )   (      )   ∏   ( )     
    We choose   to be 

any prime  larger than     *     ( )+, so that   does not divide 

 (   ) ( ) However, for     , the polynomial  ( )( ) can be written 

the form 

 

 ( )( )    (      )     ( )   

 

Where   ( )     , - has degree at most   –   . Thus  ( ) ( ) is 

divisible by   for      hence,   ( )    (   )( )  ∑  ( )( )      is 

not divisible by   If we further restrict   so that     and     , then 

  does not divided      ( ) We will complete the proof by showing that 

the first sum in Equation (14.2) is an integer divisible by    and that the 

right hand side of Equation 14.2 goes to 0 as   gets large. Thus will show 

that the left hand side in at least 1 in absolute value, which will then give 

a contradiction 

We now show that ∑   
 
   ∑  (    )) 

    is an integer divisible 

by  . We do this by showing that each term ∑  (    )) 
    is an integer 

divisible by   now, 

∑   

 

   

.  (  )/   ∑ ∑  ( )

 

    

.  (  )/ 

 

Since   ( )    𝑣      ( ) and each   (  ) is a root of   ( ) we see that 

   .  (  )/    .  (  )/     (   ) .  (  )/ 

 

For      since  ( )( )     (      )     ( ), 

 

∑  ( ) 
   .  (  )/    ∑ (      )     

 
   .  (  )/                (3) 

 

However, this sum is invariant under the action of Gal (K/ ), so it is a 

rational number. Moreover ∑ (      )     (  )  
    is a symmetric 

polynomial in   , …   of degree at most       The   (  ) are roots 

of the polynomial   ( ) whose leading coefficient is    so the second 

sum in Equation 14.3 is actually an integer by an application of the 
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symmetric function theorem (see Problem 5) this shows that 

∑   
 
   ∑  (    )) 

    is an integer divisible by   hence the left hand side 

of Equation (2) is a nonzero integer. This means that 

 

|∑ ∑      (  )

 

   

 

   

∫     ( )  
  (  )

 

|     

Let  

       
 

{|  |}  

       
   

{|    (  )|}  

       
   

{|   
  (  )|}  

And 

       
   ,   -

{|   |       (  )}  

 

       
   ,   -

{∏|  ( )|       (  )

 

   

} 

On the straight line path from 0 to   (  ) we have the bound |    |   

 |  (  )|
   

   

  
   

 This yields the inequality 

 

Combing this will the previous inequality gives 
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Since    (   )    as      the last term in the inequality above 

can be made arbitrarily small by choosing   large enough This gives a 

contradiction, so our original hypothesis that the exponentials 

          are linearly dependant over   is false. This proves the 

theorem 

While we have proved that   and   are transcendental over  , it is 

unknowns if   is transcendental over  ( ) or if   is transcendental over 

 ( ) To discuss this further, we need a definition from Section 19. If K 

is a field extension of F, then              are algebraically 

independent over F if whenever      ,       - is a polynomial with 

  (         )   , then     It is not hard to show that   and   are 

algebraically independent over   if and only if is transcendental over 

 ( ), if and only if   is transcendental over  ( ); see Problem 2 A 

possible generalization of the Lindemann – Weierstrauss theorem in 

Schanuel’s conjecture, which states that if          are   linearly 

independent complex numbers, then at least   of the numbers         

are   - linearly independent complex numbers, then at least   of the 

numbers                     are algebraically independent over   If 

Schanuel’s conjecture is true, then         are algebraically independent 

over    this is left to Problem 3 

 

Check your Progress-2 

3. State Lindemann – Weierstrauss theorem 

__________________________________________________________

__________________________________________________________

_____________________________________________________ 

4. Prove : The numbers   and   are transcendental over   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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12.5 LET US SUM UP 
 

We have discussed about the determinant of a polynomial is a 

generalization to arbitrary degree polynomials of the discriminant of a 

quadratic. We have seen that using the transcendence of   to prove that it 

is impossible to square the circle, one of the ruler and compass 

construction questions of ancient Greece that remained unsolved for 

2500years 

12.6 KEYWORDS 
 

 Generalizations - are where students tell about the pattern they see in 

the relationship of a certain group of numbers. It's a pattern than is 

always true. 

Inequality - compares two values, showing if one is less than, greater 

than, or simply not equal to another value 

 

12.7 QUESTIONS FOR REVIEW 
 

1. If B is a nondegenerate bilinear form on V, show that any basis has 

a dual basis.  

2. Let { ei } be a basis for Fn , and choose an ai E F for each i. Define 

B on this basis by B(ei, ej) = 0 if i  j and B(ei , ei ) = ai   F. Prove 

that this function extends uniquely to a bilinear form B : Fn x Fn 

F, and determine the discriminant of B. 
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12.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation – 12.2 

2. Provide statement and proof – 10.2.6  

3. Provide statement –12.4.1 

4. Provide proof – 12.4.2  
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UNIT-13 SOLVING POLYNOMIALS 

BY RADICALS 
 

STRUCTURE 

13.0 Objectives 

13.1 Introduction 

13.2 Method of Ruler and Compass Constructions  

13.3 Solvability by Radicals  

13.4 Let us sum up 

13.5 Keywords 

13.6 Questions for Review 

13.7 Suggested Reading and References 

13.8 Answers to Check your Progress 

 

13.0 OBJECTIVES 
 

Understand the Method of Ruler and Compass Constructions  

Comprehend Solvability by Radicals  

 

13.1 INTRODUCTION 
 

In the days of the ancient Greeks, some of the major mathematical 

questions involved constructions with ruler and compass. In spite of the 

ability of many gifted mathematicians, a number of questions were left 

unsolved. It was not until the advent of field theory that these questions 

could be answered. The full story of solvability of polynomials was then 

discovered by Galois, who proved a necessary and sufficient condition 

for a polynomial to be solvable. His work introduced the notion of a 

group and was the birth of abstract algebra. 
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13.2 METHODS OF RULER AND 

COMPASS CONSTRUCTIONS 

 

We consider in this section the idea of constructibility by ruler and 

compass, and we answer the following four classical questions: 

1.  Is it possible to trisect any angle? 

2.  Is it possible to double the cube? That is, given a cube of volume 

V, a side of which can be constructed, is it possible to construct a 

line segment whose length is that of the side of a cube of volume 

2V? 

3.  Is it possible to square the circle? That is, given a constructible 

circle of area A, is it possible to construct a square of area A? 

4.  For which n is it possible to construct a regular n-gon? 

The notion of ruler and compass construction was a theoretical one to the 

Greeks. A ruler was taken to be an object that could draw perfect, 

infinitely long lines with no thickness but with no markings to measure 

distance. The only way to use a ruler was to draw the line passing 

through two points. Similarly, a compass was taken to be a device that 

could draw a perfect circle, and the only way it could be used was to 

draw the circle centered at one point and passing through another. The 

compass was sometimes referred to as a "collapsible compass"; that is, 

after drawing a circle, the compass could not be Lifted to draw a circle 

centered at another point with the same radius as that of the previous 

circle. Likewise, given two points a distance d apart, the rulercannot be 

used to mark a point on another line a distance d from a given point on 

the line. 

The assumptions of constructibility are as follows. Two points are given 

and are taken to be the initial constructible points. Given any two 

constructible points, the line through these points can be constructed, as 

can the circle centered at one point passing through the other. A point is 

constructible if it is the intersection of constructible lilies and circles. 
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The first thing we note is that the collapsibility of the compass is not a 

problem, nor is not being able to use the ruler to mark distances. Given 

two constructible points a distance d apart, and a line  with a point P on 

 , we can construct a point Q on  a distance d from P. Also, if we can 

construct a circle of radius r, given any constructible point P, we can 

construct the circle of radius   centered at P. These facts are indicated in 

Figure 13.1 .It is left as an exercise (Problem 4) to describe the 

construction indicated by the figure.  

 

 

 

 

 

 

 

There are some standard constructions from elementary geometry that 

we recall now. Given a line and a point on the line, it is possible to 

construct a second line through the point perpendicular to the original 

line. Also, given a line and a point not on the line, it is possible to 

construct a second line parallel to the original line and passing through 

the point. These facts are indicated in Figure 13.2. 

 

Figure 13.2 Construction of lines perpendicular and parallel to   

passing through   

So far, our discussion has been purely geometric. We need to describe 

ruler and compass constructions algebraically in order to answer our four 

questions. To do this, we turn to the methods of analytic geometry. 

Given our original two points, we set up a coordinate system by defining 
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the x-axis to be the line through the points, setting one point to be the 

origin and the other to be the point (1, 0).We can draw the line 

perpendicular to the x-axis through the origin to obtain the y-axis. 

Let     ℝ We say that   a constructible number if we can construct two 

points a distance | | apart. Equivalently,   is constructible if we can 

construct either of the points (   ) or (   ). If   and   are constructible 

numbers, elementary geometry tells us that             and     (if 

    ) are all constructible. Therefore, the set of all constructible 

numbers is a subfield of ℝ Furthermore, if     is constructible, then so 

is √  These facts are illustrated in Figures           

 

Suppose that P is a constructible point, and set P = (a, b) in our 

coordinates system. We can construct the lines through P perpendicular 

to the  -axis and  -axis; hence, we can construct the points (a, 0) and (0, 

b).Therefore, a and b are constructible numbers. Conversely, if a and b 

are constructible numbers, we can construct (a, 0) and (0, b), so we can 

construct P as the intersection of the line through (a, 0) parallel to the y-

axis with the line through (0, h) parallel to the x-axis. Thus, P = (a, b) is 

constructible if and only if a and b are constructible numbers. 

In order to construct a number c, we must draw a finite number of lines 

and circles in such a way that | | is the distance between two points 
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ofintersection. Equivalently, we must draw line and circles so that (c, 0) 

isa point of intersection. If we let K be the field generated over   by all 

the numbers obtained in some such construction, we obtain a subfield of 

the field of constructible numbers. To give a criterion for when a number 

 

 

 

is constructible, we need to relate constructible  to properties of the field 

extension K/ . We do this with analytic geometry. Let   be a subfield 

of ℝ. Given any two points in the plane of K, we obtain a line through 

these points. This will be called a line in K. It is not hard to show that a 

line in K has an equation of the form ax + by + c = 0 with a, b, c  K. If 

P and Q are points in the plane of K, the circle with center P passing 

through Q is called a circle in K. Again, it is not hard to show that the 

equation of a circle in K can be written in the form    +   ax +by + c 

= 0 for some a, b, c   K. The next lemma gives us a connection between 

constructability and field extensions. 

Lemma 13.2.1 Let K be a subfield of ℝ 

1. The intersection of two lines in K is either empty or is a point in 

the plane of K. 

2.  The intersection of a line and a circle in. K is either empty or 

consists of one or two points in the plane of K(√ ) for some 

    with       
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3.  The intersection of two circles in K is either empty or consists of 

oneor two pointsin the plane of  (√ ) for some      with 

     

 

Proof: The first statement is an easy calculation. For the remaining two 

statements, it suffices to prove statement 2, since if   +   +        

      and   +   +                 are the equations of circles C 

and C',respectively, then their intersection is the intersection of C with 

the line(  —   )   (  —    )    (  —    )       So, to prove 

statement 2, suppose thatour line L in K has the equation          

        We assume that       since if d = 0, then      . By dividing 

by d, we may then assume that d = 1. Plugging —           into the 

equation of C, we obtain 

(     )    (        )  (        )     

 

Writing this equation in the form of              if     then 

     If      then completing the square shows that either      

 ∅ or      √         with            

 

From this lemma, we can turn the definition of constructability into a 

property of field extension of  , and in doing so obtain a criterion for 

when a number is constructible 

13.2.2 A real number c is constructible if and only if there is a tower of 

fields                    Such that            ,         -   

  for each   Therefore, if   is constructible, then   algebraic over  , and 

[ ( )   - is power of 2 

Proof:  If c is constructible, then the point (c, 0) can be obtained from a 

finite sequence of constructions starting from the plane of  . We 

thenobtain a finite sequence of points, each an intersection of 

constructible linesand circles, ending at (c, 0). By Lemma 15.1, the first 

point either lies in  or in  (√ ) for some  . This extension has degree 

either 1 or 2. Eachtime we construct a new point, we obtain a field 
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extension whose degreeover the previous field is either 1 or 2 by the 

lemma. Thus, we obtain asequence of fields 

                       

With ,         -     and      Therefore ,      - =    for some  . 

However, [ ( )   - divides ,      -, so [ ( )   - is also a power of 2 

For the converse suppose that we have a tower                

    with      and ,         -     for each   We show that   is not 

constructible by induction on  . If     then       so c is 

constructible Assume that the     and that elements of      are 

constructible since ,         -     the quadratic formulas shows that 

we may write          (√ ) for some          Since a is 

constructible by assumption, so is √ . Therefore,          (√ ) lies 

in the field of constructible numbers, hence   is constructible. 

With this theorem, we are now able to answer the four questions posed 

earlier. We first consider trisection of angles. An angle of measure 

 isconstructible if we can construct two intersecting lines such that the 

angle between them is  . For example, a 60° angle can be constructed 

because the point (√ /2, 1/2) is constructible, and the line through this 

point and (0, 0) makes an angle of 60° with the x-axis.  

Suppose that P is the point of intersection on two constructible lines. By 

drawing a circle of radius 1centered at P, Figure 13.6 shows that if  is 

the angle between the two lines, then sin   and cos   are constructible 

numbers. Conversely, if sin  and cos   are constructible, then  is a 

constructible angle (see Problem2). In order to trisect an angle of 

measure  , we would need to be able to construct an angle of   /3. 
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13.3.3 Theorem: It is impossible to trisect a     angle by ruler and 

compass construction. 

 

Proof: As noted above, a     angle can be constructed. If a      angle 

can be trisected, then it is possible to construct the number          

However, the triple angle formula                      gives 

                   Thus,   is algebraic over  . The 

polynomial           is irreducible over   because it has no 

rational roots. Therefore [ ( )   -   , so   is not constructible. A 20  

angle cannot then be constructed, so 60  degree angle cannot be trisected. 

This theorem does not say that no angle can be trisected. A 90° angle can 

be trisected, since a 30° angle can be constructed. This theorem only 

says that not all angles can be trisected, so there is no method that will 

trisect an arbitrary angle.  

The second classical impossibility we consider is the doubling of a cube. 

 

13.3.4 Theorem: It is impossible to double a cube of length 1by ruler 

and compass construction 

Proof: The length of a side of a cube of volume 2 is √ 
 

 The minimal 

polynomial of √ 
 

 over   is       Thus, [  (√ 
 

)    -    is not a 

power of 2, so √ 
 

 is not constructible 

The third of the classical impossibilities is the squaring of a circle. For 

this, we need to use the fact that   is transcendental over   

13.5.5 Theorem: It is impossible to square a circle of radius 1 

Proof: We are asking whether we can construct a square of area  To 

doso requires us to construct a line segment of length√ , which is 

impossiblesince √  is transcendental over   by last question concerns 

construction of regular       . To determinewhich regular r   

     can be constructed, we will need information aboutcyclotomic 

extensions. Recall from Section 7 that if 𝜔 is a primitive  throot of 

unity, then [  (𝜔) :  ] = ∅(n), where ∅is the Euler phi function. 
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13.5.6 Theorem : A regular n – gon is constructible if and only if ∅(n)is 

a power of 2 

 

Proof : We point out that a regular n – gon is constructible if and only if 

the central angles 2    are constructible, and this occurs if and only if 

    (    ) is a constructible number. Let 𝜔              (    )  

    (    ) is primitive  th root of unity. Then    .
  

 
/  

 

 
(𝜔  𝜔  ), 

Since 𝜔       (    ) Thus   (    )      (𝜔). However   (   

 )     ℝ) And 𝜔   ℝ so  (𝜔)       (    ) But 𝜔 is not root of 

       (    )    as an easy calculation shows. So [ 𝜔  

  (   (    ) )-    Therefore, if    (    )  is constructible, then 

[     (    )    - is a power of 2. Hence, ∅( )   [ 𝜔    - is also 

power of 2. 

 

Conversely, suppose that ∅( ) is a power of 2. The field  (𝜔) is a 

Galois extension of   with Abelian Galois group by Proposition 7.2. If 

      ( 𝜔)   (   (    ) )) by the theory of finite Abelian 

groups there is a chain of subgroups 

                  

With |        |    If       (  ) then |        |   , thus    

    (√   )  for some   . Since        (   (    ))     ℝ, each of the 

      Since the square root of a constructible number is constructible, 

we see that everything in  (   (    ) is constructible. Thus,    (   

 ) is constructible, so a regular   - gon is constructible 

 

This theorem shows, for example, that a regular 9 – gon is not 

constructible and a regular 17 – gon is constructible. An explicit 

algorithm for constructing a regular 17-gon was given by Gauss in 1801.  

If      
      

   is the prime factorization of  , then ∅( )  

 ∏      (     )   Therefore ∅( )is a power of 2 if and only if   

           where         and the    are primes of the form      . In 
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order to determine which regular   gons are constructible, it then reduces 

to determining the primes of the form       

 

Check your Progress-1 

1. Explain The assumptions of constructibility  

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

2. Provide statement of lemma related to subfield of ℝ 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

13.3 SOLVABILITY BY RADICALS 
 

Consider, for example, the polynomialx
4
-6x

2
 +7. Its roots are   √  √  

all of which lie in the extension   (√ , √  √  of  . Thisextension 

gives rise to the chain of simple extensions

 

where each successive field is obtained from the previous one by 

adjoining the root of au element of the previous field. This example 

motivates the following definitions. 

 

13.3.1 Definition: A field extension K of F is a radical extension if K = 

F(a1 ,...,ar), such that there are integers n1 , .. ,nr, with   
  ∈F and 

  
  ∈ F(a1 ,...,ai-1) for all i > 1. If n1 = ∙∙∙∙ = nr, = n, then K is called 

an n-radical extension of F. 

 

13.3.2 Definition If f(x) ∈F [xj, then f is solvable by radicals if there is a 

radical extension L/ F such that f splits over L. 

 

If K and F are as in the first definition, then K is an n -radical extension 

of F for n = n1∙∙∙nrsince   
 ∈ F(a1 ,...,ai-1) for each i. The definition 
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of radical extension is equivalent to the following statement: K is a 

radicalextension of F if there is a chain of fields 

 

where Fi + i = Fi (ai) for some ai∈ Fi + i with   
   Fifor each i. From the 

definition, it follows easily that if K/ F is a radical extension and L/K is a 

radical extension, then L/F is a radical extension. 

 

Example : Any 2-Kummer extension of a field F of characteristic not 

2 is a 2-radical extension of F by Theorem 11.4. Also, if K/F is a cyclic 

extension of degree n , and if F contains a primitive nth root of unity, 

then K is an n-radical extension of F . 

 

Example : If K =  (√ 
 

), then K is both a 4-radical extension and a 

2-radical extension of  . The second statement is true by considering the 

Tower 

 

  

Example : Let c ∈ℝ. By Theorem 15.2, c is constructible if and 

only if there is a tower   = F0 F1∙∙∙Frsuch that for each i, 

Fi + 1 = Fi (√  ) for some ai∈Fi, and c ∈Fr . Therefore, c is constructible 

if and only if c lies in a subfield K of ℝ such that K is a 2-radical 

extension of  . 

 

The definition of solvability by radicals does not say that the splitting 

field of f over F is itself a radical extension. It is possible for f to be 

solvable by radicals but that its splitting field over F is not a radical 

extension. However, if F contains "enough" roots of unity, then the 

splitting field ofa solvable polynomial is a radical extension of F. For an 

example of the first statement, see Example 16.13. The second statement 

is addressed in Problem 3. 

 

The next lemma is the key technical piece of the proof of the 

characterization of solvability by radicals. 
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13.3.3 : K be an n-radical extension of F, and let N be the 

normal closure of K/F. Then N is an n-radical extension of F. 

 

Proof. Let K = F(α1,….,αr) with   
 ∈ F(α1,….,αi-1). We argue 

by induction on r. If r = 1, then K = F(α) with α
n
  = α∈F. Then 

N = F( 1,…, m), where the  i are the roots of min(F, α). However, this 

minimal polynomial divides x
n
-α, so   

  = α. Thus, N is an n-radical 

extension of F. Now suppose that r > 1.  

 

Let N0 be the normal closure of F(α1,…, αr -1) over F. By induction, N0 is 

an n-radical extension of F. 

 

Since N0 is the splitting field over F of {min(F, αi) : 1  i  r - 1}, and 

Nis the splitting field of all min(F, αi ), we have N = N0 (γ1,…,γm), where 

the yi are roots of min(F, αr ). Also,   
  = b for some b ∈F, (α1,….,αr-1) 

N0 . By the isomorphism extension theorem, for each i there is a σi∈ 

Gal(N/F) with σi (αr) = γ1Therefore, -  
  = σi (b) . 

 

However, N0is normal over F, and b ∈No, so σi(b) ∈ N0 . Thus, each 

is an nth power of some element of N0 , so N is an n-radical extension of 

N0. Since No is an n-radical extension of F, we see that N is an n-radical 

extension of F. 

 

We need some group theory in order to state and prove Galois' theorem 

on solvability by radicals. The key group theoretic notion is that of 

solvability of a group. 

 

13.3.4 Definition : A group G is solvable if there is a chain of subgroups 

 

such that for all i, the subgroup Hi is normal in Hi+1 and the quotient 

group Hi+1 / Hi is Abelian. 

 

The following two propositions are the facts that we require about 

solvability. 
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 13.3.5 Proposition : Let G be a group and N be a normal subgroup of 

G. Then G is solvable if and only if N and G/N are solvable. 

 

13.3.6 Proposition : If n  5, then Sn is not solvable. 

We now prove Galois' theorem characterizing polynomials that are 

solvableby radicals. 

 

13.3.7 Theorem (Galois) Let char(F) = 0 and let f (x) ∈ F[x]. If K isa 

splitting field of f over F, then f is solvable by radicals if and only if 

Gal(K/F) is a solvable group. 

 

Proof. Suppose that f is solvable by radicals. Then there is an n-radical 

extension M/F with K  M. Let 𝜔 be a primitive nth root of unity in 

some extension field of M. The existence of co follows from the 

assumption that char (F) = 0. Then M(𝜔)/M is an n-radical extension, so 

M(𝜔)/F is an n-radical extension. Let L be the normal closure of M(𝜔)/F. 

By Lemma16.6, L is an n-radical extension of F. Thus, L is also an n -

radical extension of F(𝜔). Therefore, there is a sequence of fields 

 

 

where Fi +1 = Fi(αi) with ⍺ 
 ∈Fi. For i   1, the extension Fi +1 /Fi 

is Galois with a cyclic Galois group, since Fi contains a 

primitive nth root of unity. Also, F1 /F0 is an Abelian Galois extension, 

since F1 is a cyclotomic extension of F. Because char(F) = 0 and L/F 

is normal, L/F is Galois. Let G = Gal(L/F) and Hi = 

Gal(L/Fi ). We have the chain of subgroups 

 

 

By the fundamental theorem, Hi +1is normal in Hi since Fi +1 is Galois 

over Fi . Furthermore, Hi/Hi +1 Gal(Fi +1 /Fi ), so Hi/Hi ±i is an Abelian 

group. Thus, we see that G is solvable, so Gal(K/F) is also solvable, 

sinceGal(K/F) ≅G/ Gal(L/K). 

For the converse, suppose that Gal(K/F) is a solvable group. We have a 

Chain 
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Gal(K/F) = H0⊇ H1⊇ ∙∙∙⊇ Hr = 〈id〉 

 

with Hi +1 normal in Hi and Hi /Hi +1 Abelian. Let Ki = ,F(Hi). By the 

fundamentaltheorem, Ki +1 is Galois over Ki and Gal(Ki +1]/Ki)≅Hi /Hi 

+1.Let n be the exponent of Gal(K/F), let 𝜔 be a primitive nth root of 

unity,and set L i = Ki (w). We have the chain of fields 

 

 

 

with K  Lr. Note that Li +1 = LiKi +1. Since Ki +1 /Ki is Galois, by the 

theorem of natural irrationalities, Li +1 /Li is Galois and Gal(Li +1/Li) is 

isomorphic to a subgroup of Ga1(Ki +1 /Ki ). This second group is 

isomorphic to Hi / Hi +1, an Abelian group. Thus, Gal(Li +1, /Li) is 

Abelian, and its exponent divides n. The field Li +1 is an n-Kummer 

extension of Li, so Li +1 is an n -radical extension of Lr. Since Lo F(𝜔) is 

a radical extension, transitivity shows that Lr is a radical extension of 

F.As K  Lr., the polynomial f is solvable by radicals. 

Our definition of radical extension is somewhat lacking for fields of 

characteristic p, in that Theorem 16.10 is not true in general for prime 

characteristic. However, by modifying the definition of radical extension 

in an appropriate way, we can extend this theorem to fields of 

characteristic p. This is addressed in Problem 2. Also, note that we only 

needed that char(F)does not divide n in both directions of the proof.  

 

Therefore, the proof above works for fields of characteristic p for 

adequately large p. 

 

Let k be a field. The general nth degree polynomial over k is the 

polynomial 

 

where the s, are the elementary symmetric functions in the ti . Tf we 

could find a formula for the roots of f in terms of the coefficients of f, we 

could use this to find a formula for the roots of an arbitrary nth degree 

polynomial over k. If n  4, we found formulas for the roots of f .For n  



Notes 

121 

5, the story is different. The symmetric group Sn is a group of 

automorphismson K = k(ti ,...,tn ) and the fixed field isF = k(s1,...,sn).  

 

Therefore, Gal(K/F) = Sn . Theorem 13.3.7  shows thatno such formula 

exists if n   5. 

 

13.3.8 Corollary : Let f (x) be the general nth degree polynomial over a 

fieldof characteristic O. If n  5, then f is not solvable by radicals. 

Example 16.12 Let f(x) = x
5
- 4x + 2 ∈ [x]. By graphing techniques 

of calculus, we see that this polynomial has exactly two nonreal roots, as 

indicated in the graph below. 

 

 

 

Furthermore, f is irreducible over   by the Eisenstein criterion. Let K 

be the splitting field of f over  . Then [K:  ] is a multiple of 5, since 

any root of f generates a field of dimension 5 over Q. Let C; = Gal(K/ ). 

We can view G  S5. There is an element of G; of order 5 by Cayley's 

theorem, since 5 divides |G|. Any element of S5 of order 5 is a 5-cycle. 

Also, if σis complex conjugation restricted to K, then a permutes the two 

nonreal roots of f and fixes the three others, so σ is a transposition. The 

subgroup of S5 generated by a transposition and a 5-cycle is all of S5 so 

G = S5 is not solvable. Thus, f is not solvable by radicals. 

 

Example : Let f (x) = x
3
- 3x + 1 E   [x], and let K be the splitting field 

of f over  . We show that f is solvable by radicals but that K is nota 

radical extension of  . Since f has no roots in   and deg(f) = 3, the 

polynomial f is irreducible over  . The discriminant of f is 81 = 9
2
, so 

the Galois group of K/  is A3 and [K :  ] = 3.Therefore, Gal(K/F) is 
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solvable, so f is solvable by radicals by Galois' theorem. If K is a radical 

extension of  , then there is a chain of fields 

 

with Fi= Fi- 1 (αi) and   
 ∈Fi- for some n. Since [K :  ] is prime, we 

see that there is only one proper inclusion in this chain. Thus, K =  (b) 

with b
n
= u ∈  for some n. The minimal polynomial p(x) of b over   

splits in K, since K/  is normal. Let b' be another root of p(x). Then 

b
n
 =(b')

n
 = u, so b' /b is an nth root of unity. Suppose that μ= b'/b 

is a primitive m
th

 root of unity, where m divides n. Then   (μ) K, so 

[  (μ) : =  ] = ϕ(m) is either 1 or 3. An easy calculation shows that ϕ 

(m)≠ 3for all m. Thus, [  (μ) :  ] = 1, so μ, ∈ . However, the only roots 

of unity in   are ±1, so μ= ±1. Therefore b' = ±b. This proves that p(x) 

has atmost two roots, so [  (b) :  ]   2  [K :  ], a contradiction to the 

equality (b) = K. Thus, K is not a radical extension of  . 

 

Check your Progress-2 

3. Define n-radical extension  

__________________________________________________________

__________________________________________________________

_______________________________________________________ 

4. Define solvable group  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

13.4 LET US SUM UP 
 

We have discussed the methods in details about Ruler and Compass 

Constructions. We have also understood solvability by radicals in details 

with example. 

13.5 KEYWORDS 
 



Notes 

123 

Constructible Number. A number which can be represented by a 

finite number of additions, subtractions, multiplications, divisions, and 

finite square root extractions of integers 

Elementary geometry. : the part of Euclidean geometry dealing with 

the simpler properties of straight lines, circles, planes, polyhedrons, the 

sphere, the cylinder, and the right circular cone 

 

13.6 QUESTIONS FOR REVIEW 
 

1. Use the figures in this section to describe how to construct a+ b, a—

b, 

ab, a/b, and √ , provided that a and b are constructible. 

 

2.  If sin   and cos   are constructible numbers, show that   is a 

constructible angle. 

 

3. Let f (x) E F[x] be solvable by radicals. If F contains a primitive nth 

root of unity for all n, show that the splitting field of f over F is a 

radical extension of F. After working through this figure out just 

which roots of unity F needs to have for the argument to work. 

 

13.7 SUGGESTED READINGS AND 
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1991. 

3. N. Jacobson, Basic Algebra, vols. I & II, W. H. Freeman, 1980 (also 

published by Hindustan  Publishing Company) 

4. S. Lang. Algebra, 3rd edn. Addison-Weslley, 1993. 

5. I.S. Luther and I.B.S. Passi, Algebra, Vol.III-Modules, Narosa 
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7. VivekSahai and VikasBist, Algebra, Narosa Publishing House, 1999 
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13.8 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation – 13.2 

2. Provide statement– 13.2.1  

3. Provide definition –13.3.1 

4. Provide proof – 13.3.4  

 

 



125 

UNIT-14 SOLVING POLYNOMIALS 

BY RADICALS 
 

STRUCTURE 

14.0 Objectives 

14.1 Introduction 

14.2 Topological groups 

14.3 The krull topology on the Galois group 

14. 4 The fundamental theorem of infinite Galois theory 

14.5 Galois groups as inverse limits 

14.6 Non open subgroups of finite index 

14.7 Let us sum up 

14.8 Keywords 

14.9 Questions for Review 

14.10 Suggested Reading and References 

14.11 Answers to Check your Progress 

 

14.0 OBJECTIVES 
 

Understand the concept of Topological groups 

Understand the concept of the krull topology on the Galois group 

Enumerate The fundamental theorem of infinite Galois theory 

Comprehend Galois groups as inverse limits & Non open subgroups of 

finite index 

14.1 INTRODUCTION 
 

In this chapter, we investigate infinite Galois extensions and prove an 

analog of the fundamental theorem of Galois theory for infinite 

extensions. The key idea is to put a topology on the Galois group of an 

infinite dimensional Galois extension and then use this topology to 
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determine which subgroups of the Galois group arise as Galois groups of 

intermediate extensions. 

 

14.2 TOPOLOGICAL GROUPS 
 

14.2.1 DEFINITION 7.1 A set G together with a group structure and a 

topology is a topological group if the maps 

 

 

 

 

are both continuous. 

 

Let a be an element of a topological group G. Then  

 

 

is continuous because it is the composite of 

 

 

 

 

In fact, it is a homeomorphism with inverse (a 
– 1 

)L. Similarly aR:g ↦ga 

and g ↦g 
– 1 

 are both homeomorphisms. In particular, for any subgroup 

H of G, the coset aH of H is open  or closed if H is open or closed. As the 

complement of H in G is a union of such cosets, this shows that H is 

closed if it is open, and it is open if it is closed and of finite index. 

 

Recall that a neighbourhood base for a point x of a topological space X 

is a set of neighbourhoods N such that every open subset U of X 

containing x contains an N from N . 

 

14.2.2 PROPOSITION :Let G be a topological group, and let N be a 

neighbourhood base for the identity element e of G. Then 
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(a) for all N1;N2    , there exists an N'   N such that e   N'    N1 

⋂  N2; 

 

(b) for all N    , there exists an N'   N such that N' N'   N; 

 

(c) for all N    , there exists an N'   N such that N'   N
– 1 

; 

 

(d) for all N    and all g   G, there exists an N'   N such that N'   g 

Ng
– 1

;  

 

(e) for all g   G, {gN | N     } is a neighbourhood base for g.  

 

Conversely, if G is a group and N is a nonempty set of subsets of G 

satisfying (a, b, c, d), then there is a (unique) topology on G for which (e) 

holds.  

 

PROOF. If N is a neighbourhood base at e in a topological group G, 

then (b), (c), and (d) are consequences of the continuity of (g , h) ↦ gh, g 

↦ g
– 1

, and h ↦ gh g
– 1

 respectively. Moreover, (a) is a consequence of 

the definitions and (e) of the fact that gL is a homeomorphism.  

 

Conversely, let   be a nonempty collection of subsets of a group G 

satisfying the conditions (a)–(d). Note that (a) implies that e lies in all the 

N in   . Define U to be the collection of subsets U of G such that, for 

every g   U , there exists an N     with gN U . Clearly, the empty set 

and G are in U, and unions of sets in U are in U. Let U1, U2   U, and let 

g   U1 ⋂ U2; by definition there exist N1,N2   N with gN1 , gN2   U, on 

applying (a) we obtain an N’     such that gN'   U1 ⋂ U2, which 

shows that U1 ⋂ U2    U. It follows that the elements of U are the open 

sets of a topology on G. In fact, one sees easily that it is the unique 

topology for which (e) holds.  

 

We next use (b) and (d) to show that (g , g') ↦ g g' is continuous. Note 

that the sets            form a neighbourhood base for (g1 , g2) in 
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   . Therefore, given an open U   G and a pair (g1 , g2) such that g1g2 

2 U , we have to find N1;N2   N such that           U . As U is open, 

there exists an N     such that        U. Apply (b) to obtain an N' 

such that N' N'     ; then            U. But          

  (       
  )     and it remains to apply (d) to obtain an N1   N such 

that N1   g        
  .  

 

Finally, we use (c) and (d) to show that g ↦g 
– 1

 is continuous. Given an 

open U   G and a g   G such that g 
– 1

   U , we have to find an N     

such that gN   U
– 1

. By definition, there exists an N     such that g 
– 1

 

N   U. Now N 
– 1 

g  U
– 1

, and we use (c) to obtain an N'     such that 

N' g   U
– 1

, and (d) to obtain an       such that       

 (      )       

 

14.2 THE KRULL TOPOLOGY ON THE 

GALOIS GROUP 
 

Recall that a finite extension Ω of F is Galois over F if it is normal and 

separable, i.e., if every irreducible polynomial f   F [X] having a root in 

Ω has deg f distinct roots in Ω. Similarly, we define an algebraic 

extension Ω of F to be Galois over F if it is normal and separable.  

 

For example, F
sep

 is a Galois extension of F. Clearly, Ω is Galois over F 

if and only if it is a union of finite Galois extensions.  

 

14.3.1 PROPOSITION: If Ω is Galois over F , then it is Galois over 

every intermediate field M. 

 

PROOF. Let f (X) be an irreducible polynomial in M [X] having a root a 

in Ω. The minimum polynomial g(X) of a over F splits into distinct 

degree-one factors in Ω [X]. As f divides g (in M [X]), it also must split 

into distinct degree-one factors in Ω [X]. 
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14.3.2 PROPOSITION: Let Ω be a Galois extension of F and let E be a 

subfield of  Ω containing F . Then every F -homomorphism E   Ω 

extends to an F -isomorphism Ω   Ω. 

 

PROOF. The same Zorn’s lemma argument shows that every F -

homomorphism E   Ω extends to an F -homomorphism α : Ω   Ω. 

Let a   Ω, and let f be its minimum polynomial over F. Then Ω contains 

exactly deg (f) roots of f , and so therefore does α (Ω). Hence a   α (Ω) 

which shows that α is surjective.  

 

14.3.3 COROLLARY:  Let Ω   E   F be as in the proposition. If E is 

stable under Aut(Ω / F) then E is Galois over F . 

 

PROOF. Let f (X) be an irreducible polynomial in F [X] having a root a 

in E. Because Ω is Galois over F , f (X)has n = deg (f ) distinct roots 

a1,…, an in Ω. There is an F -isomorphism F [a]   F [ai ]   Ω sending a 

to ai (they are both stem fields for f ), which extends to an F -

isomorphism Ω   Ω . As E is stable under Aut(Ω / F), this shows that 

ai   E.  

 

Let Ω be a Galois extension of F , and let G = Aut(Ω / F), For any finite 

subset S of Ω, let 

 

 

 

14.3.4 PROPOSITION: There is a unique structure of a topological 

group on G for which the sets G(S) form an open neighbourhood base of 

1. For this topology, the sets G(S) with S G-stable form a neighbourhood 

base of 1 consisting of open normal subgroups. 

 

PROOF. We show that the collection of sets G.S/ satisfies (a, b, c, d) of 

(14.2.1). It satisfies (a) because G(S1)   G(S2) = G(S1   S2). It satisfies 

(b) and (c) because each set G(S) is a group. Let S be a finite subset of Ω. 

Then F(S) is a finite extension of F , and so there are 
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only finitely many F -homomorphisms F(S)   Ω. Since σS = τS if σ | 

F(S)  = τ | F(S) this shows that   ̅  ⋃       is finite. Now     ̅ for 

all σ   G, and it follows that G( ̅) is normal in G. Therefore, σ G( ̅) σ 
–1

  

= G( ̅)  = G( ) which proves (d). It also proves the second statement.  

 

The topology on Aut (Ω / F) defined in the proposition is called the Krull 

topology. We write Gal(Ω / F) for Aut(Ω / F) endowed with the Krull 

topology, and call it the Galois group of (Ω / F). The Galois group of F
sep

 

over F is called the absolute Galois group of F. If S is a finite set stable 

under G, then F(S) is a finite extension of F stable under G, and hence 

Galois over F (14.3.3). Therefore, 

 

 

 

is a neighbourhood base of 1 consisting of open normal subgroups. 

 

14.3.5 PROPOSITION 7.7 Let Ω be Galois over F . For every 

intermediate field E finite and Galois over F, the map 

 

 

is a continuous surjection (discrete topology on Gal (E/F ). 

  

PROOF:  Let σ   Gal(E / F) and regard it as an F -homomorphism 

E   ˝. Then σ extends to an F -isomorphism Ω   Ω (see 14.3.2), which 

shows that the map is surjective. For every finite set S of generators of E 

over F , Gal (Ω /E) = G(S), which shows that the inverse image of 1Gal (E/ 

F) is open in G. By homogeneity, the same is true for every element of 

Gal (E/ F).  

 

14.3.6 PROPOSITION: The Galois group G of a Galois extension Ω/F 

is compact and totally disconnected. 

  

PROOF. We first show that G is Hausdorff. If σ   τ , then σ 
– 1  G, and 

so it moves some element of Ω, i.e., there exists an a   Ω such that σ (a) 

  τ (a). For any S containing a, σG(S) and G(S) are disjoint because their 
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elements act differently on a. Hence they are disjoint open subsets of G 

containing σ and τ respectively. We next show that G is compact. As we 

noted above, if S is a finite set stable under G, then G(S) is a normal 

subgroup of G, and it has finite index because it is the kernel of  

 

    G  Sym(S) 

 

Since every finite set is contained in a stable finite set, the argument in 

the last paragraph shows that the map 

 

 

 

  

 

is injective. When we endow ∏  G/G(S) with the product topology, the 

induced topology on G is that for which the G(S) form an open 

neighbourhood base of e, i.e., it is the Krull topology.  

 

According to the Tychonoff theorem, ∏  G/G(S) is compact, and so it 

remains to show that G is closed in the product. For each S1   S2, there 

are two continuous maps ∏  G/G(S)   G/G(S1) namely, the projection 

onto G/G(S1) and the projection onto G/G(S2) followed by the quotient 

map G/G(S2)   G/G(S1) Let E(S1, S2) be the closed subset of ∏  G/G(S) 

on which the two maps agree. Then ⋂  (     )     
 is closed, and 

equals the image of G.  

 

Finally, for each finite set S stable under G, G(S) is a subgroup that is 

open and hence closed. Since  ⋂  ( ) = {1G}, this shows that the 

connected component of G containing 1G is just {1G}. By homogeneity, a 

similar statement is true for every element of G.  

 

14.3.7 PROPOSITION: For every Galois extension Ω/F , Ω Gal.
( Ω /F) 

= 

F. 
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 PROOF. Every element of Ω   F lies in a finite Galois extension of F , 

and so this follows from the surjectivity in Proposition 14.3.5  

 

Check your Progress-1 

1. State the definition of topological group 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Define solvable group  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

14.4 THE FUNDAMENTAL THEOREM OF 

INFINITE GALOIS THEORY 
 

14.4.1 PROPOSITION : LetΩ be Galois over F, with Galois group G. 

(a) Let M be a subfield of Ωcontaining F. Then Ω is Galois over M, the 

Galois group Gal(Ω/ M) is closed in G, and Ω Gal(Ω/M) = M. 

(b) For every subgroup H of G, Gal (Ω/ Ω
H
) is the closure of H. 

 

PROOF. (a) The first assertion was proved in (14.3.1). For each finite 

subset S M, G(S) isan open subgroup of G, and hence it is closed. But 

Gal(ΩM) = ⋂S M G(S), and so italso is closed. The final statement now 

follows from (14.3.7). 

 

(b) Since Gal(Ω/Ω
H
)contains H and is closed, it certainly contains the 

closure  ̅ ofH. On the other hand, let σ∈ 2 G\ ̅; we have to show that σ 

moves some element of Ω
H
. 

Because σ is not in the closure of H, 

σG (Ω/E)⋂H   ∅ 

for some finite Galois extension E of F in Ω (because the sets Gal(Ω / E) 

form a neighbourhoodbase of 1; see above). Let ∅ denote the surjective 

map Gal(Ω/ F)  Gal(E / F). 
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Then σ|E ∅H, and so σ moves some element of E∅H
Ω

H
 _ H  

14.4.2 THEOREM : Let Ω be Galois over F with Galois group G. The 

maps 

 

are inverse bijections between the set of closed subgroups of G and the 

set of intermediatefields between  and F : 

 

 

Moreover, 

(a) the correspondence is inclusion-reversing: H1   H2⇔Ω
H1 Ω

H2
 ; 

(b) a closed subgroup H of G is open if and only if ΩH has finite degree 

over F, inwhich case (G:H) =[Ω
H
 :F]; 

(c) σHσ- 1⟷σM, i.e., Ωσ Hσ-1
 =σ(Ω)

H
); Gal(Ω/σM)= σGalΩ / M)σ- 1

; 

(d) a closed subgroup H of G is normal if and only if Ω
H
 is Galois over F 

, in whichcase Gal(Ω
H
/F) G/H. 

 

PROOF. For the first statement, we have to show that H  Ω
H
 and M   

Gal(Ω/M) are inverse maps. Let H be a closed subgroup of G. Then Ω is 

Galois over H and Gal(Ω
/
Ω

H
) = H (see 14.4.1). 

 

Let M be an intermediate field. Then Gal(Ω
/
M) is a closed subgroup of G 

and ΩGal(Ω/M)
 = M (see 14.4.1). 

(a) We have the obvious implications: 

 

 

But Gal( Ω/Ω
Hi

 ) = Hi (see 14.4.1). 

(b) As we noted earlier, a closed subgroup of finite index in a topological 

group is alwaysopen. Because G is compact, conversely an open 

subgroup of G is always of finite index. 
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Let H be such a subgroup. The map σ⟷σ|ΩH
 defines a bijection 

 

 

(apply 14.2.2) from which the statement follows. 

 

(c) For τ∈ G and α∈ , τα= α⇔στσ-1
(σα) = σα. Therefore, Gal( /σ ) = 

σGal(Ω/M)σ-1
, and so σ Gal(Ω/M)σ-1σM. 

 

(d) Let H⟷M. It follows from (c) that H is normal if and only if M is 

stable underthe action of G. But M is stable under the action of G if and 

only it is a union of finiteextensions of F stable under G, i.e., of finite 

Galois extensions of G. We have alreadyobserved that an extension is 

Galois if and only if it is a union of finite Galois extensions. 

 

14.4.3 REMARK : As in the finite case (3.17), we can deduce the 

following statements. 

(a) Let (Mi)i∈I be a (possibly infinite) family of intermediate fields, and 

let Hi⟷Mi . 

Let∏   be the smallest field containing all the Mi ; then because⋂i∈I 

Hi is the largest(closed) subgroup contained in all the Hi, 

 

(b) Let M ⟷ H. The largest (closed) normal subgroup contained in H is 

N =⋂σσHσ-1(cf. GT 4.10), and so Ω
N
, which is the composite of the 

fields σM, is thesmallest normal extension of F containing M. 

 

14.4.4 PROPOSITION: Let E and L be field extensions of F contained 

in some common field. If E/F is Galois, then EL/L and 

E/E⋂ L are Galois, and the map 

 

is an isomorphism of topological groups. 
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PROOF. We first prove that the map is continuous. Let G1= Gal(EL/L) 

and let G2 = Gal(E/E⋂ L/. For any finite set S of elements of E, the 

inverse image of G2(S) in G1is G1(S). 

 

We next show that the map is an isomorphism of groups (neglecting the 

topology). As in the finite case, it is an injective homomorphism (3.18). 

Let H be the image of the map. 

 

Then the fixed field of H is E⋂L, which implies that H is dense in 

Gal(E/E⋂ L). But His closed because it is the continuous image of a 

compact space in a Hausdorff space, and so 

H /   Gal(E/E ⋂ L) 

 

Finally, we prove that it is open. An open subgroup of Gal(EL/L) is 

closed (hencecompact) of finite index; therefore its image in Gal(E/E ⋂ 

L) is compact (hence closed) offinite index, and hence open. 

 

14.4.5 COROLLARY 7.15 Let Ω be an algebraically closed field 

containing F, and let E and Lbe as in the proposition. If ⍴: E   Ω and σ : 

L   Ω are F -homomorphisms such that⍴|E ⋂ L= σ|E ⋂ L, then there 

exists an F -homomorphism τ:EL  Ωsuch that τ| E = ⍴and τ|L = σ. 

 

PROOF. According to (14.2.2), σ extends to an F -homomorphism 

s:EL Ω As s| E ⋂ L = ⍴| E ⋂ L, we can write s|E = ⍴o𝜀 for some 𝜀 ∈ 

Gal (E/E ⋂ L). According to the proposition,there exists a unique e ∈ 

Gal(EL/L) such that e|E = 𝜀. Define τ = soe
-1 

 

EXAMPLE :  Let Ω be an algebraic closure of the finite field 𝔽⍴. Then 

G D Gal.=Ω/𝔽⍴) contains a canonical Frobenius element, σ = (a  a⍴), 
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and it is generated by it as a topological group, i.e., G is the closure of 

〈σ⟩. We now determine the structure of G. 

 

Endow   with the topology for which the groups n , n  1, form a 

fundamental system of neighbourhoods of 0. Thus two integers are close 

if their difference is divisible by a large integer. 

 

As for any topological group, we can complete   for this topology. A 

Cauchy sequence in   is a sequence (ai)i 1, ai∈ , satisfying the following 

condition: for all n  1, there xists an N such that ai≡aj mod n for i,j> N. 

Call a Cauchy sequence in   trivial ifai  0 as i     i.e., if for all n  1, 

there exists an N such that ai≡ 0 mod n for all i > N. The Cauchy 

sequences form a commutative group, and the trivial Cauchy sequences 

form a subgroup. We define  ̂ to be the quotient of the first group by the 

second. It has aring structure, and the map sending m∈  to the constant 

sequence m,m,m,… identifies  with a subgroup of  ̂. 

 

Let α∈ ̂be represented by the Cauchy sequence (ai). The restriction of 

the Frobenius element σ to 𝔽⍴
n
 has order n. Therefore (σ|𝔽p

n
)
ai

 is 

independent of i provided it is sufficiently large, and we can define 

σα∈Gal(Ω/𝔽p) to be such that, for each n,σα|𝔽pn= (σ|𝔽p
n
)
ai 

for all i 

sufficiently large (depending on n). The map α σα:  ̂Gal(Ω/𝔽p) 

is an isomorphism. 

The group  ̂ is uncountable. To most analysts, it is a little weird—its 

connectedcomponents are one-point sets. To number theorists it will 

seem quite natural — theChinese remainder theorem implies that it is 

isomorphic to ∏          pwhere  p is the ringof p-adic integers. 

 

EXAMPLE :  Let  al
 be the algebraic closure of   in  . Then 

Gal( al
/ ) is one of themost basic, and intractable, objects in 

mathematics. It is expected that every finite groupoccurs as a quotient of 

it. This is known, for example, for Sn and for every sporadic simple 

group except possibly M23. See (5.41) and mo80359. 
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On the other hand, we do understand Gal(F
ab

/F) where F   al
 is a finite 

extensionof   and F ab is the union of all finite abelian extensions of F 

contained in  al
. For example, Gal ab

/ /   ̂𝗑This is abelian class field 

theory—see my notes Class Field Theory. 

 

14.4.6 ASIDE : A simple Galois correspondence is a system consisting 

of two partially ordered sets P and Q and order reversing maps f :P   Q 

and g: Q   P such that gf (p)   p for all p  P and f g(q)   q for all q   

Q. Then f g f = f, because fg  (f p)   fp and gf (p)   p implies 

f (g f p)   f (p) for all p   P . Similarly, g f g = g, and it follows that f and 

g define a one-to-one correspondence between the sets g(Q) and f (P). 

 

14.5 GALOIS GROUPS AS INVERSE 

LIMITS 
 

14.5.1 DEFINITION: A partial ordering   on a set I is directed, and the 

pair (I,  ) is adirected set, if for all i,j∈ I there exists a k ∈ I such that i, 

j  k. 

 

14.5.2 DEFINITION :  Let (I,  ) be a directed set, and let C be a 

category (for example, the category of groups and homomorphisms, or 

the category of topological groups and continuous homomorphisms). 

(a) An inverse system in C indexed by (I,  ) is a family (Ai)i∈I of objects 

of C together with a family (  
 
o : Aj Ai)i j of morphisms such that   

 
o 

  
  =   

 all i j  k. 

 

(b) An object A of C together with a family (pj : A   Aj)i∈I of morphisms 

satisfying  
 
o pj=pi all i j is an inverse limit of the system in (a) if it has 

the following universal property: for any other object B and family qj: (B 

 Aj) of morphisms such   
 
o qj=qi all i j , there exists a unique 

morphism r : B   A such that pjo r =qj for j, 
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Clearly, the inverse limit (if it exists), is uniquely determined by this 

condition up to a unique isomorphism. We denote it by 
   
← (Ai,   

 
),or just 

   
← Ai. 

 

Example : Let (Gi ,   
 
:  Gj   Gi ) be an inverse system of groups. Let 

 

 

 

 

and let pi:G  Gi be the projection map. Then  
 
o qj=qi is just the 

equation   
 
(gi) = gi. Let (H,qi) be a second family such that   

 
o qj=qi 

. The image of the homomorphism 

 

 

is contained in G, and this is the unique homomorphism H  G carrying 

qi to pi . Hence (G,pi) =
   
← (Gi  

 ). 

 

EXAMPLE : Let (Gi,  
 
: Gj Gi be an inverse system of topological 

groups and continuous homomorphisms. When endowed with the 

product topology, ∏Gi becomes at opological group 

 

 

 

and G becomes a topological subgroup with the subspace topology. The 

projection mapspi are continuous. Let H be (H,qi) be a second family 

such that   
 
o qj=qi. Thehomomorphism 
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EXAMPLE : Let. (Gi   
 
 Gj→Gi) be an inverse system of finite groups, 

and regard it as an inverse system of topological groups by giving each 

Gi the discrete topology. A topological group G arising as an inverse 

limit of such a system is said to be profinite 

 

 

 

As the second set is an open neighborhood of (xi), this shows that G is 

closed in∏Gi. By Tychonoff’s theorem, ∏Gi is compact, and so G is 

also compact. The map pi:G →Gi is continuous, and its kernel Ui is an 

open subgroup of finite index in G (hence also closed). As⋂Ui={e}, the 

connected component of G containing e is just {e}. By homogeneity, the 

same is true for every point of G: the connected components of G are the 

one-point sets — G is totally disconnected. 

 

We have shown that a profinite group is compact and totally 

disconnected, and it is an exercise to prove the converse 

 

EXAMPLE : Let Ω be a Galois extension of 𝔽. The composite of two 

finite Galois extensions of in Ω is again a finite Galois extension, and so 

the finite Galois sub extensions of Ω form a directed set I. For each E in I 

we have a finite group Gal(E/ 𝔽), and for each E Eʹ we have a restriction 

homomorphism 

 

 

In this way, we get an inverse system of finite groups 

 

 

 

For each E, there is a restriction homomorphism 
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and, because of the universal property of inverse limits, these maps 

define a homomorphism 

 

 

This map is an isomorphism of topological groups. This is a restatement 

of what we showed in the proof of (14.2.6). 

 

14.6 NON-OPEN SUB-GROUPS OF FINITE 

INDEX 
 

Non-open sub-groups of finite index We apply Zorn’s lemma10 to 

construct a non-open subgroup of finite index in Gal.( al
/ ). 

 

14.6.1 LEMMA: Let V be an infinite-dimensional vector space. For all 

  1, there exists a subspace V  of V such that V/Vn has dimension  . 

 

PROOF. Zorn’s lemma shows that V contains maximal linearly 

independent subsets, and then the usual argument shows that such a 

subset spans V, i.e., is a basis. Choose a basis, and take V  to be the 

subspace spanned by the set obtained by omitting   element from the 

basis.  

 

14.6.2 PROPOSITION: The group Gal.( al
/ ). has non-open normal 

subgroups of index 2  for all  > 1. 

PROOF.  

Let E be the subfield  [√  ;√  ;……√  ;….]p prime, ofc 

For each p, Gal(  [√  ;√  ;……√  ] / ) is a product of copies of  

=2 indexed by the set {primes p}⋃{∞}. As 

 

 

it is a direct product of copies of /2 indexed by the primesƖ of   

(including Ɩ=∞) endowed with the product topology. Let G = Gal.E/  

and let 
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This is a subgroup of G (in fact, it is a direct sum of copies 

of =2 indexed by the primes of  ), and it is dense in G because clearly 

every open subset of G contains an element of H. We can regard G/H as 

vector space over 𝔽 2 and apply the lemma to obtain subgroups G  of 

index 2
n 
in G containing H. If G  is open in G, then it is closed, which 

contradicts the fact that H is dense. Therefore, G  is not open, and its 

inverse image in Gal.( al
/ )is the desired subgroup1 

 

14.6.3 ASIDE: Let G = Gal.( al
/ )We showed in the above proof that 

there is a closed normal sub-group N = Gal. ( al
/ )ofG suchthatG/N is 

an uncountable vector space over 𝔽 2. Let (G/N) be the dual of this vector 

space (also uncountable). Every nonzero ƒ∈(G/N) defines a surjective 

map G→ 𝔽 2 whose kernel is a subgroup of index 2 in G. These 

subgroups are distinct, and so G has uncountably many subgroups of 

index 2. Only countably many of them are open because   has only 

countably many quadratic extensions in a fixed algebraic closure. 

 

14.6.4 ASIDE: Let G be a profinite group that is finitely generated as a 

topological group. It is a difficult theorem, only recently proved, that 

every subgroup of finite index in G is open.  

 

Check your Progress-2 

3. Define Simple Galois correspondence 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4. State Directed Set and Inverse system  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

14.7 LET US SUM UP 
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We have discussed infinite Galois extensions and prove an analog of the 

fundamental theorem of Galois theory for infinite extensions. 

 

14.8 KEYWORDS 
 

Homomorphism is a structure-preserving map between two algebraic 

structures of the same type (such as two groups, two rings, or two vector 

spaces).  

Restriction - In mathematics, the restriction of a function is a new 

function, denoted or , obtained by choosing a smaller domain A for the 

original function . 

 

14.9 QUESTIONS FOR REVIEW 
 

1. Let p be a prime number, and let Ω be the subfield of   generated 

over   by all p
m

th 

roots of 1 for m   N. Show that Ω is Galois over Q with Galois group 

 

 

(Hint: Use that Ω is the union of a tower of subfields 

 

 

2. Let F be an algebraic closure of 𝔽 , and let 𝔽   be the subfield of F 

with p
m

 elements. 

Show that 
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14.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide definition – 14.2.1 

2. Provide statement– 13.2.1  

3. Provide definition –Refer ASIDE 14.4.6  

4. Provide definition – 14.5.1 & 14.5.2  

 


